
Cinema Database Specification

Chaplin Release

LA-UR-15-20572

by

David DeMarle (Kitware, Inc)
David Rogers (LANL)
John Patchett (LANL)
Berk Gevevi (Kitware)

Los Alamos National Laboratory
Bikini Atoll Rd., SM 30

Los Alamos, NM 87545
cinema@lanl.gov

LA-UR-15-20572

1 Introduction
Extreme scale scientific simulations are leading a charge to exascale computation, and data analytics runs the risk of
being a bottleneck to scientific discovery. Due to power and I/O constraints, we expect in situ visualization and analysis
will be a critical component of these workflows. Options for extreme scale data analysis are often presented as a stark
contrast: write large files to disk for interactive, exploratory analysis, or perform in situ analysis to save detailed data
about phenomena that a scientists knows about in advance. We present a novel framework for a third option a highly
interactive, image-based approach that promotes exploration of simulation results, and is easily accessed through
extensions to widely used open source tools. This in situ approach supports interactive exploration of a wide range of
results, while still significantly reducing data movement and storage.

More information about the overall design of Cinema is available in the paper, An Image-based Approach to
Extreme Scale In Situ Visualization and Analysis [1].

A Cinema database is a collection of data that supports this image-based approach to interactive data exploration.
It is a set of images and associated metadata, and is defined and an example given in the following sections.

1.1 Public Comment
We invite public comment on this specification. Please send comments to cinemascience.org.

1.2 Use Cases
A Cinema Database supports the following three use cases:

1. Searching/querying of meta-data and samples. Samples can be searched purely on metadata, on image content,
on position, on time, or on a combination of all of these.

2. Interactive visualization of sets of samples.

3. Playing interactive visualizations, allowing the user on/off control of elements in the visualization.

1.3 Cinema is Implementation Agnostic
The Cinema Database is implementation agnostic. This database specification separates the metadata description of
a set of images from the implementation of how these images are generated and stored. The specification defines a
database of URIs that maps metadata to specific data products which can then be accessed and used indepependently
of the specific details of the low level data storage structures. In particular, if the images for a specific instance of a
database are stored on disk, the design of the directory structure, metadata files, and image filenames on disk is entirely
up to the person writing the data as long as a mapping from the database API to the files in question can be described.

1.4 Overview
A cinema database is a set of precomputed visualization samples that can be automatically generated and later queried
and interactively viewed. This document describes release v1.0 of the Cinema Chaplin Database, in which image
constituents are stored instead of pre-rendered images. The constituent images are inputs to a deferred rendering
algorithm which allows the user to control which objects are in view and how each is colored. A separate document [2]
specifies a Simple Cinema Database, which contain a fixed set of pre-rendered images for a fixed set of combinations
of visualization operations.

In the rest of this document we describe the metadata structure, which describes the overall contents of the cinema
data base and the relationships between entities within, and give as an example one low level structures based on files
and numbered directories.

The metadata structure for the database is held in a json format text file. In the text file a number of different
variables, or parameters are of fundamental interest. Each parameter will be associated with one or more values.
The parameters represent items that might be changed in a traditional post processing visualization session. Concrete
examples include simulation time step, camera position, object visibility, filter settings and choice of colormapped
data array. Besides values, parameters can be annotated with additional information.

1

LA-UR-15-20572

In Chaplin, the database will contain a subset of the full combinatorial set of all variable/value pairs. The contents
are a subset because invalid and uninteresting combinations are excluded. An example of an excluded combination is
the color choice parameter for an object when the visibility parameter for the object is set to off. The exclusion list
takes the form of a constraints list.

A low level data storage layer beneath the metadata layer holds individual results in the form of raster images. For
example, a depth raster for one particular object drawn from one particular viewpoint at one particular timestep.

1.5 Sample low level file layout
The example storage layer we describe here organizes these results in numbered directories within a tree hierarchy.
Each directory corresponds to a variable and numbered contents correspond to different values for the variable. The
mapping of numbers to data values comes from the list of values for each parameter in the metadata. In the example
below we have a data base with two timesteps, each with two camera poses and two objects. The first object has three
color components, the second has only two.

results/
info.json
pose=0/

time=0/
vis=0/

color=0.npz
color=1.png
color=2.npz

vis=1/
color=0.npz
color=1.png

time=0/
vis=0/

color=0.npz
color=1.png
color=2.npz

vis=1/
color=0.npz
color=1.png

pose=1/
time=0/

vis=0/
color=0.npz
color=1.png
color=2.npz

vis=1/
color=0.npz
color=1.png

time=1/
vis=0/

color=0.npz
color=1.png
color=2.npz

vis=1/
color=0.npz
color=1.png

The directory hierarchy follows an order that satisfies the constraints between variables. Viewing applications
that use the cinema python reference library should not depend on any particular file order but should instead use the

2

LA-UR-15-20572

reference library’s database like API search for, insert and retrieve contents based on parameter names and values. For
applications that can not use the refence API, the exact file structure mapping is described in section 3.

1.5.1 Multiple Views

Note that it is convenient to group cinema data bases together. This is useful, for example in the case of multi-view
applications. In this case, independent databases can be collected as siblings in a higher level directory, and another
json file which lists the directories can provide information about the set.

An example directory hierarchy containing the above and corresponding json file follow.

collection.cdb/
info.json
results/

info.json /*etc as above*/
moreresults/

info.json /*similar to above*/

The top level info.json here would be as follows.

{
"metadata": {

"type": "workbench"
},
"runs": [

{ "title": "a view of some data",
"description": "interesting results ...",
"path": "results" },

{ "title": "a different view",
"description": "even more interesting results ...",
"path": "moreresults" }

]
}

We now return to a more thorough discussion of the metadata content that provides structure for an isolated cinema
data base.

2 The Cinema Chaplin Specification
A Chaplin database is a collection of results sampled by a set of visualization parameters. Each parameter is described
with an entry in “parameter list” section of the json file. Parameters will have a a set of values, a default value from
among the values, a name and a suggested label. Parameters may also have a suggested widget type, a role for the
parameter that describes its type more fully for generation purposes. Parameters may contain additional annotations
especially in the case of color/image component information.

Additional information about the database as a whole is kept in the metadata section. The information in the
metadata section is separate from the parameters as it is not of the same combinatorial visualization-space nature.

Examples of typical parameters in a cinema database are:

• Time. Time varying data can be sampled at arbitrary points along the temporal domain.

"parameter_list": {
"time": { "default": "0.000000e+00",

"values": ["0.000000e+00", "1.000737e-04", "1.999051e-04"],
"type": "range",
"label": "time" },

...
}

3

LA-UR-15-20572

• Camera positions. In a traditional visualization setting the user can manipulate the camera arbitrarily. For
cinema we discretize and organize the range of captured motions into of several camera motion classes as
described in section 2.1.

"metadata": {
"camera_model": "phi-theta",
...

},
"parameter_list": {

"phi": { "default": -180,
"values": [-180, -150, -120, -90, -60, -30,

0,
30, 60, 90, 120, 150],

"type": "range",
"label": "phi" },

"theta": { "default": -90,
"values": [-90, -64, -38, -12, 13, 38, 63, 88],
"type": "range",
"label": "theta" },

...
}

• Objects. Different items may be displayed in the scene. A visibility parameter controls which items are visible
at any given time. For a composite database the generator will ensure that only one item is visible in any given
raster while the images are being produced. The viewer uses the same parameter to allow multiple items to be
visible and depth composites multiple rasters together to produce the effect. Visibility parameters have a role
annotation of “layer”.

"parameter_list": {
"vis": {

"values": [
"Contour1",
"Wavelet1",
...

],
"role": "layer",
"type": "option",
...

}
}

• Zero or more operators, such as clipping plane and isocontour samples along with their respective ranges. Each
result is sampled and saved in isolation from all others with nothing else visible in the scene. In a viewing
application, the user can choose any number of these samples and see them rendered together with correct
occlusion culling. Operator parameters have a role annotation of “control”.

"parameter_list": {
"Contour1": { "values": [37.3531, 97.2221, 157.091, 216.96, 276.829],

"role": "control",
... },

...
}

• Color components for deferred rendering as described in 2.2. Color parameters have a role annotation of “field”.

4

LA-UR-15-20572

2.1 Cameras
We discretize the infinite set of camera possibilities by dividing first into different camera types. The camera type is
given in the “camera model” entry of the metadata.

"metadata": {
"camera_model": "azimuth-elevation-roll"}
...

}

In a static camera the position and orientation is fixed an unchanging. Static cameras do not require a corresponding
parameter entry.

In a phi-theta spherical type camera the camera “from” position varies over a set of regularly sampled angular
positions centered around a chosen focal point. Phi-Theta cameras will have one or two corresponding parameters
entries. In Cinema, phi is defined to be rotations around the vertical axis, going from -180 to 180 degrees, inclusive on
the negative only. Theta is defined to be rotations from south to north pole, ranging from -90 to 90 degrees inclusive.

In the more general pose based cameras, new to Cinema v1.0, we store complete camera reference frames from an
arbitrary collection of viewpoints. Pose based camera are allowed to move over time and track objects in the scene.

Pose cameras consist of a parameter named pose, which contains any number of 3x3 normalized camera reference
frames. To keep the combination of camera positions over time and view directions manageable, we vary the camera’s
local coordinate frame consistently at every time step, but offset them from a different location at each time step. Two
simple variations on this theme move the coordinate frame about specific from points yaw-pitch-roll or outward-facing,
and around specific lookat points azimuth-elevation-roll or inward-facing. Inward facing camera are an improvement
upon the earlier phi-theta camera type.

For example a pose based, inward facing, object tracking camera for a dataset with three timesteps might contain,

"metadata": {
"camera_model": "azimuth-elevation-roll",
"camera_eye": [[0.0, 0.0, 66.92], /*corresponds to time 0.0e+00*/

[1.0, 0.0, 66.92], /*corresponds to time 1.0e-04*/
[2.0, 0.0, 66.92]], /*corresponds to time 8.0e-04*/

"camera_at": [[0.0, 0.0, 0.0], /*as above */
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0]]

"camera_up": [[0.0, 1.0, 0.0], /*as above */
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0]],

...
},
"parameter_list": {
"time": {

"values": ["0.0e+00",
"1.0e-04",
"8.0e-04"],

... },
"pose": {

"values": [[[-1.0, 1.224e-16, 7.498e-33],
[0.0, 6.123e-17, -1.0],
[-1.224e-16, -1.0, -6.123e-17]],
[[-1.0, 1.109e-16, 5.175e-17],
[0.0, 0.422, -0.906],
[-1.224e-16, -0.906, -0.422]],
...],

...
},

...

5

LA-UR-15-20572

},

Besides the entries above additional pose camera metadata includes camera near and far planes and camera field of
view settings. The complete set is optional, but when present it allows for the calculation of the exact coordiantes of
every pixel in the database.

2.2 Colors
In a Cinema workflow, the application producing a Cinema Database creates a set of image constituents for each sample
in the parameter space. Viewing applications use these consituents to draw objects and to color them dynamically
dependent on the user’s choices for solid color or colormapped value arrays. We describe the set of image consituents
for a given object with a color parameter. These image constituents can be:

• Depth image. This encodes a depth value for every pixel, relative to the camera. Required for compositing. In
Chaplin, depth images are stored as floating point rasters, ranging from 0 for the near plane to 255 for the far
plane, and kept in numpy “.npz” files.

• Luminance image. This encodes a rendered shading brightness for each pixel. Required for lighting to be
included in the final rendering. In Chaplin, luminance images are stored in RGB images where the R component
contains the ambient gray value, G contains the diffuse, and B contains the specular component. Of these,
currently only the diffuse component is used. All components range from 0 to 255.

• Color image. This encodes a standard RGB value for each pixel - the result of rendering the viewpoint from the
camera. Color images can not be dynamically color mapped.

• Value image. This encodes an arbitrary array value associated with the data that is visualized at each pixel.
Global ranges for each array, ie the min and max value for a value over all timesteps and parameter settings, are
recorded in the meta data file. In Chaplin, value images are stored as floating point rasters, where the value is
either normalized between 0.0 and 1.0 or kept unmodified, and stored in a numpy “.npz” file. This is described
more fully in section 2.3.2.

An example of a color specification is as follows:

"parameter_list": {
"colorContour1": { "values": ["depth", "luminance", "RTData_0"],

"types": ["depth", "luminance", "value"],
"valueRanges": {"RTData_0": [37.3531, 276.829]},
"role": "field" },

...
}

Here we have all possibilities for the color constituents of an object named “Contour1”. The color constituents
consist of a depth raster, a luminance raster, and a value raster for a scalar quantity called “RTData”. The RTData
array varies over the entire simulation and for all objects between 37 and 277.

2.3 Metadata
In addition to the sampled data as represented by the parameter space, a cinema database contains additional data that
describes the version of the database, the relationships between parameters and information about how they are stored.

2.3.1 Version Information

Version information allows cinema based applications to allow for backward compatibility. The type entry states
whether this cinema store holds a Simple non-compositable database, or a compositable database as described in this
document. Furthermore a version entry state the specific revision level of both types. The store type entry descibes the
lower level file format that the raster and other data is kept in. This should be “FS” for the reference implementation
described in section 3 that is based on named files and directories.

6

LA-UR-15-20572

"metadata": {
"type": "composite-image-stack",
"store_type": "FS",
"version": "0.1",
...

},

2.3.2 Value Mode

Another piece of information in the metadata section for composite type databases is the value mode entry. This is
a record of the type for value raster images. When the entry is absent, or contains the value “1”, it means that the
value rasters were made using the approximative method that predates version Chaplin. Prior to Chaplin, value raster
images were approximated by scaling numerical quantities to the range of 0 to 224, outputting the results into standard
RGB image files, and then using the range information for the array to recover numbers that were close to the original
values. In Chaplin these value rasters are automatically converted to floating point rasters in which each pixel is a
number between 0.0 and 1.0 and then stored in a numpy “.npz” file.

If the entry is present and contains the value “2” it means that the value rasters were created directly and contain
exact numerical quantities instead of normalized ones.

2.3.3 Constraints

Relationships between parameters are included because in a visualization session some parameters are constrained by
others. A scene with two unrelated objects in it could have entirely different sets of arrays for each one of them and
thus the choice of colors to colormap by depends on the choice of object displayed. Relationships turn otherwise order
independent options into a graph of parent child relationships.

In cinema we store this information in a constraints entry in the json file. It consists of a list of parameters, and
for each parameter in the list there is a sub list of one or more parameters and associated parameter values, that the
containing parameter’s presence depends upon. In general:

<parameter_name1> : {
<parameter_name2> : [list of permissible values that enable parameter 1],
<parameter_name3> : [list of permissible values that enable parameter 1],

}

A specific example being:

"constraints": {
"Contour1": {

"vis": [
"Contour1"

]
},
"colorContour1": {

"vis": [
"Contour1"

]
},
"colorWavelet1": {

"vis": [
"Wavelet1"

]
},
"Wavelet1": {

"vis": [
"Contour1",
"Wavelet1"

7

LA-UR-15-20572

]
}

Two other optional pieces of information may be found in the json file.

2.3.4 Pipeline

A pipeline entry encodes the relationships between objects in the scene. It, in combination with the constraints and
roles information is helpful for building up GUIs.

"metadata": {
"pipeline": [

{ "children": [],
"parents": [

"2488"
],
"id": "2687",
"visibility": 1,
"name": "Contour1" },

{ "children": [
"2687"

],
"parents": [

"0"
],
"id": "2488",
"visibility": 1,
"name": "Wavelet1" },

...
],
...,

}

2.3.5 Name Pattern

The last entry that may be of use is the name pattern entry. This is a legacy of the simple database format where it is
used to fully describe the directory structure of the “FS” type database. In the composite database, the constraints and
hierarchical nature of the data make it impractical to fully describe the layout with a regular expression. It is used only
to specify the default raster file format for RGB type color component rasters. The trailing file extension determines
this.

3 Low level file Structure
This information is provided for those who wish to bypass the cinema python reference libray but still use or create
compatible file stores. In this situtation it is necessary to know exactly how to map parameter value combinations to
file names. There are three important aspects, one is to derive the file type and file format extension, another is to
derive a specific filename for a particular value, and the last is to derive a consistent directory path given a collection
of values.

Note that the exact format of the store has changed over time as Cinema has evolved. The reference library uses
a cinema store’s included version markers to provide backwards compatibility. We here describe the latest version
information as of Cinema Chaplin version 0.1. For further details consult the FileStore class’s get filename() method
in the reference library.

8

LA-UR-15-20572

3.1 File Type
Unlike in Astaire, there are a variety of content types in a Chaplin store: depth and value images are rasters of floating
point numbers, while luminance and color images are rasters of RGB tuples. The content type is determined from a
“field” or color parameter’s “types” entry. For each value that one of these parameters takes, the corresponding “types”
entry indicates if it is ’rgb’, ’depth’, ’value’, ’luminance’, or ’normals’ type content.

"parameter_list": {
"colorContour1": { "values": ["val1", "val2", "val3"],

"types": ["depth", "luminance", "value"],
"valueRanges": {"RTData_0": [37.3531, 276.829]},
"role": "field" },

...
}

In the example above, whenever the colorContour1 parameter takes on “val1”, the content is a depth image. When
it is “val2” the content is a luminance image. When it is “val3” it is a value image. In Chaplin depth and value images
are stored in numpy compressed array “.npz” files. Everything else is stored in a standard image format. The choice
of a specific image format, “.png”, “.tiff”, “.jpeg” and the like is made based on the trailing file extension from the
name pattern entry.

3.2 File Name
In Chaplin, parameter settings are encoded into file and directory names. We use a “key=index” scheme for all
parameters where the key is the parameter name and the index is the 0 based index into the values list to a specific
value. In the example above when colorContour1 parameter takes on “val1” the result will appear in a file or directory
named “colorContour1=0”. Using indices instead of values avoids a number of conversion problems involving decimal
precision and also the fact that non-scalar values do not map well onto file system naming rules.

3.3 Directory Path
The scheme we use to consistently arrange files into the filesystem is to sort alphabetically the parameter names, and
then lay out the data in subdirectories in a dependency following order. In particular parameters with no dependencies
go first, and then as dependencies are satisfied, dependent parameters follow, always within alphabetical order at each
dependency level.

With parameters:

"b_param": {"values": [1,-2]}
"a_param": {"values": ["a","b"]}
"c_param": {"values": [42.0, 3.1415926535897932384626433832795028841971],

"types": ["depth","rgb"],
"role": "field" }

"d_param": {"values": ["I","II","III"],
"types": ["luminance","value","depth"],
"role": "field"}

and constraints:

constraints": {
"c_param": {

"b_param": [1]
},
"d_param": {

"b_param": [-2],
}

}

9

LA-UR-15-20572

and filename pattern “dontcare.tiff”: the resulting layout would be:

a_param=0/b_param=0/c_param=0.npz
a_param=0/b_param=0/c_param=1.tiff
a_param=0/b_param=1/d_param=0.tiff
a_param=0/b_param=1/d_param=1.npz
a_param=0/b_param=1/d_param=2.npz
a_param=1/b_param=0/c_param=0.npz
a_param=1/b_param=0/c_param=1.tiff
a_param=1/b_param=1/d_param=0.tiff
a_param=1/b_param=1/d_param=1.npz
a_param=1/b_param=1/d_param=2.npz

Because “a param” comes before “b param” alphabetically. “c param” and “d param” follow their shared de-
pendee “b param” and would do so even if they were renamed to something less than “b param”.

Adding another dependency level would change the layout with the new parameter following its own dependee.

"aa_param": {"values": [10, 11]}

additional constraint:

"aa_param": {
"d_param": ["I","III"]

}

a_param=0/b_param=0/c_param=0.npz
a_param=0/b_param=0/c_param=1.tiff
a_param=0/b_param=1/d_param=0/aa_param=0.tiff
a_param=0/b_param=1/d_param=0/aa_param=1.tiff
a_param=0/b_param=1/d_param=1.npz
a_param=0/b_param=1/d_param=2/aa_param=0.npz
a_param=0/b_param=1/d_param=2/aa_param=1.npz
a_param=1/b_param=0/c_param=0.npz
a_param=1/b_param=0/c_param=1.tiff
a_param=1/b_param=1/d_param=0/aa_param=0.tiff
a_param=1/b_param=1/d_param=0/aa_param=1.tiff
a_param=1/b_param=1/d_param=1.npz
a_param=1/b_param=1/d_param=2/aa_param_0.npz
a_param=1/b_param=1/d_param=2/aa_param_1.npz

4 Example
This example is based on the above JSON schema outline.

{
"parameter_list": {

"vis": {
"label": "vis",
"type": "option",
"role": "layer",
"values": [

"Slice1",
"Superquadric1"

],
"default": "Slice1"

},

10

LA-UR-15-20572

"colorSuperquadric1": {
"types": [

"depth",
"luminance",
"value",
"value"

],
"type": "hidden",
"role": "field",
"valueRanges": {

"TextureCoords_0": [
0.0,
1.0

],
"TextureCoords_1": [

-0.00033474931842647493,
1.0

]
},
"values": [

"depth",
"luminance",
"TextureCoords_1",
"TextureCoords_0"

],
"label": "colorSuperquadric1",
"default": "TextureCoords_0"

},
"Slice1": {

"label": "Slice1",
"type": "hidden",
"role": "control",
"values": [

-0.5,
0,
0.5

],
"default": -0.5

},
"colorSlice1": {

"types": [
"depth",
"luminance",
"value",
"value"

],
"type": "hidden",
"role": "field",
"valueRanges": {

"TextureCoords_0": [
0.0,
1.0

],
"TextureCoords_1": [

11

LA-UR-15-20572

0.0,
1.0

]
},
"values": [

"depth",
"luminance",
"TextureCoords_1",
"TextureCoords_0"

],
"label": "colorSlice1",
"default": "TextureCoords_0"

},
"pose": {

"label": "pose",
"type": "range",
"values": [

[
[1.0, 0.0, 7.498-33],
[7.498e-33, -6.123e-17, -1.0],
[0.0, 1.0, -6.123e-17]

],
[

[1.0, 1.224e-16, 1.224e-16],
[1.224 -1.0, 0.0],
[1.224e-16, 1.499e-32, -1.0]

],
[

[-1.0, -1.224e-16, 0.0],
[1.224 -1.0, 0.0],
[0.0, 0.0, 1.0]

],
[

[1.0, 2.449e-16, 7.498e-33],
[7.498e-33, -6.123e-17, 1.0],
[2.449 -1.0, -6.123e-17]

],
[

[-1.0, 1.224e-16, 7.498e-33],
[0.0, 6.123e-17, -1.0],
[-1.22 -1.0, -6.123e-17]

],
[

[-1.0 0.0, 1.224e-16],
[0.0, 1.0, 0.0],
[-1.2 0.0, -1.0]

],
[

[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]

],
[

[-1.0, -1.224e-16, 7.498e-33],

12

LA-UR-15-20572

[0.0, 6.123e-17, 1.0],
[-1.2 1.0, -6.123e-17]

]
],
"default": [

[1.0, 0.0, 0.0,
[0.0, 1.0, 0.0,
[0.0, 0.0, 1.0

]
},

},
"constraints": {

"Superquadric1": {
"vis": [

"Slice1",
"Superquadric1"

]
},
"colorSuperquadric1": {

"vis": [
"Superquadric1"

]
},
"Slice1": {

"vis": [
"Slice1"

]
},
"colorSlice1": {

"vis": [
"Slice1"

]
}

}
"metadata": {

"version": "0.1",
"store_type": "FS",
"value_mode": 2,
"type": "composite-image-stack",
"camera_model": "azimuth-elevation-roll",
"camera_eye": [

[
-0.021166744801978096,
1.7656863321901966,
2.174890404450956

]
],
"camera_at": [

[
0.0,
0.0,
0.0

]
],

13

LA-UR-15-20572

"camera_up": [
[

-0.021825711219248648,
0.776071754521858,
-0.6302668245776063

]
],
"camera_nearfar": [

[
0.008157218972537116,
8.157218972537116

]
],
"camera_angle": [

30.0
],
"pipeline": [

{
"children": [],
"parents": [
"3937"

],
"id": "4206",
"visibility": 1,
"name": "Slice1"

},
{

"children": [
"4206"

],
"parents": [

"0"
],
"id": "3937",
"visibility": 1,
"name": "Superquadric1"

}
],

},
"name_pattern": "{pose}.png",

}

References
[1] James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and Mark Petersen. An

image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’14, pages 424–434, Piscat-
away, NJ, USA, 2014. IEEE Press.

[2] David Rogers, James Ahrens, and John Patchett. Cinema simple database specification. Technical Report LA-
UR-15-20572, Los Alamos National Laboratory, January 2015.

14

