
Remote Visualization With
ParaView
Cory Quammen

Kitware, Inc.

Overview
Part 1 - Getting connected

ParaView client/server architecture
Running and connecting the client and server
Connection types
Connecting to remote clusters

Part 2 - Remote visualization

What happens where
Remote vs. local rendering
Speeding up remote rendering

Part 1
Getting connected

ParaView Architecture
ParaView client - application with user interface

Runs on the desktop to visualize local data

ParaView server (pvserver) - server application

Runs on remote system

Can be built with MPI for parallel
visualization on clusters

Client

Server

ParaView client application
Is a GUI application

Scriptable with Python

Connects to a server for visualization

By default, is connected to a built-in server in
the same process, offering standalone
visualization capabilities.

Client

Server

ParaView server
Executable named pvserver that runs on a remote system
where data resides

No GUI available (do not forward X11 to your client
workstation)

Connects to a client that drives the visualization
session

Client Server

commands

images,
geometry

ParaView server - graphics requirements
Can use graphics acceleration if available

Can use X11 to access graphics accelerators

If NVIDIA nodes are available, building with EGL is possible (no X11 required)

If neither X11 nor EGL are available, can do software rendering with offscreen
Mesa OpenGL library

When running pvserver remotely through SSH, do not enable X11 forwarding
with -x or -y

This could cause rendering to happen on the client!

ParaView server - MPI
pvserver can be built with or without MPI (with is recommended)

In both cases, connecting the client to the server is the same

Client connects to rank 0 on the server, process 0 coordinates ranks

Application binaries provided by Kitware are built with MPICH 3.2

This is probably not optimal on your system

If system has hi-speed interconnect, you will want to build pvserver with
MPI for the interconnect

Side note - data server, render server
pvserver is actually two servers, a data server and a render server

The two servers can be run separately, but not often used this way

Client

Server
commands

images,
geometry

Data
server

Render
server

Client

commands

images,
geometry

Render
server

Data
server

Running pvserver
Run pvserver[.exe] at a terminal

Linux -
pvserver is in same bin/ directory as paraview

macOS -
pvserver is in /Applications/ParaView-5.6.0.app/Contents/bin

Windows -
pvserver.exe is in C:\Program Files\ParaView-5.6.0*\bin

pvserver waiting for a connection
> pvserver
Waiting for client…
Connection URL: cs://terminus.local:11111
Accepting connection(s): terminus.local:11111

Connecting the client
In client, clicking the button brings up connection dialog.

Click here
to add a

new server

Add forward connection to localhost
Add a configuration to connect to a server running on same machine as client

Enter text, click Configure Click Save

Connect to localhost
Select localhost configuration and click Connect

Connected server
shown here

Try it
Navigate to your ParaView installation

Run pvserver on your local system with no arguments

Set up a new connection configuration

Connect to the server from the ParaView client

Disconnect by clicking

Running pvserver in parallel
You can run pvserver like any other MPI program

> mpiexec -np <num processes> pvserver [additional
arguments]

*Windows version built with MPI requires MS-MPI (free download) to be installed

Connecting to the server is the same as when it is run serially

Running pvserver in a job queue
Typically need to submit batch job

qsub -A <project to charge time to>
 -N <number of nodes>
 -n <number of cores on each node>
 -q <job to submit job to>
 mpiexec -np <N*n> pvserver

Forward connections
> pvserver

Listens for incoming client connection on port 11111

> pvserver --server-port=22222
Listens for incoming client connection on custom port 22222

If only it were that simple...
No HPC cluster is open to the internet with an open socket connection

Common solution - have the server connect to the client

Reverse connections
ParaView client listens for incoming connection, pvserver initiates connection to
--client-host argument

> pvserver --reverse-connect --client-host=localhost

This is a new type of connection, so we need to add a new connection
configuration to the ParaView client

Configure reverse connection
Add a server in the Choose Configuration Server dialog

Set Server Type to “Client / Server (reverse connection)

Click Configure and click Save on the next screen

Connect the server to the client
Run pvserver --reverse-connect --client-host=localhost

Select the reverse-localhost configuration and click Connect

Server will output:

Connecting to client (reverse
connection requested)...
Connection URL: csrc://localhost:11111
Client connected.

Try it
Set up a new connection configuration

Name: reverse-localhost

Host: localhost

Port: default (11111)

Server Type: “Client / Server (Reverse Connection)”

Connect in the Choose Server Configuration dialog

> pvserver --reverse-connection --client-host=localhost

If client is behind a firewall...

A reverse connection alone will not work in this scenario

Outside connections cannot get to ParaView client behind firewall

SSH tunneling
Usually systems behind firewalls can be accessed via SSH

SSH allows a mechanism called “tunneling” that can be used to bypass firewall
restrictions on network connections in a secure way by sharing the SSH
connection with other network connections

We can use this to create secure ParaView client/server connections through
firewalls

SSH forward tunneling
> ssh -L <localport>:<remotehost>:<remoteport> <server>

SSH will listen on <localport> for a connection and forward the connection to
<remotehost> on port <remoteport>

ParaView client connects to localhost:<localport> and SSH forwards this to the
remote server

SSH SSH
serverClient Server

localhost:<localport
>

remotehost:<remoteport>

SSH forward tunneling
Server side

localhost> ssh -L <localport>:remote:<remoteport> user@remote

remote> pvserver --server-port=<remoteport>

Client side

Add a new “Client / Server” (forward) connection where server Host is
“localhost” and Port is <localport>

SSH forward tunneling - concrete example
Server side

localhost> ssh -L
11111:k.larc.nasa.gov:22222
user@k.larc.nasa.gov

user@k > pvserver \
 --server-port=22222

Client side

mailto:user@k.larc.nasa.gov

SSH forward tunneling - concrete example
Server side

localhost> ssh -L
11111:k.larc.nasa.gov:22222
user@k.larc.nasa.gov

user@k > pvserver \
 --server-port=22222

Client side

mailto:user@k.larc.nasa.gov

Those pesky login nodes
Typically, there are dedicated login nodes separate from compute nodes

System architecture looks like this

How do we tunnel to a compute node?

Workstation Login nodes Compute nodes

Client

SSH forward tunneling with login nodes
Login nodes are not used for compute

You need to submit a job to a queue

You won’t know the DNS of the compute node

Forward tunneling relies on you knowing the hostname of the compute node

How do we get that?

SSH forward tunneling to compute node
Solution: use two terminals

Terminal 1: SSH into login node, queue job, get hostname of compute node

t1> ssh user@k.larc.nasa.gov
t1> qsub -I -l nodes=1 -q K4-standard
t1> hostname
compute-node21

Terminal 2: SSH into login node, set up forwarding from client to compute node

t2> ssh -L ZZZZZ:compute-node21:YYYYY user@k.larc.nasa.gov

mailto:user@k.larc.nasa.gov

SSH forward tunneling to compute node
Launch pvserver on Terminal 1

t1> mpiexec -np <N> pvserver --server-port=YYYYY

With the ParaView client, connect to localhost on port ZZZZZ

This should connect the ParaView client through the SSH tunnel set up in
Terminal 2 to the server on the compute node

Two terminals is too many
Forward tunneling with two shells is
cumbersome!

We can take care of launch of pvserver and
connecting with a reverse SSH tunnel

Key is to use a Command Startup Type that
starts pvserver when connection is made

Note variables such as $USERNAME$

These are defined in a .pvsc definition file
that you can import to define server
connections

Example:

Example XML for previous connection
<Server name="Topaz (ERDC)" resource="csrc://localhost:11111">
 <CommandStartup>
 <Options>
 <Option name="USERNAME" label="Username" save="true">
 <String default=""/>
 </Option>
 </Options>

…
 <Command exec="$SSHLOC$" timeout="0" delay="0">
 <Arguments>
 <Argument value="-q"/>
 <Argument value="-R"/>
 <Argument value="$SERVER_PORT$:127.0.0.1:PV_SERVER_PORT"/>
 <Argument value="-l"/>
 <Argument value="$USERNAME$"/>

…

ParaView can
download .pvsc file
from URL and add
connection
configurations
automatically

Configured servers are stored in .pvsc
file in home directory:

%APPDATA%/ParaView/servers.pvsc
~/.config/ParaView/servers.pvsc

Reverse connection
Connect button launches a program to SSH into and authenticate with login node and launches a script
there. Client then waits for reverse connection from pvserver running on compute node. No separate
SSH connection required.

The script:

 Finds out login node’s IP address

 Submits a pvserver job through queue

 pvserver job starts with --reverse-connection back to the waiting GUI client over the tunnel

Reverse connection caveats
When login and compute nodes are separate, SSH daemon needs to have
AllowTCPForwarding and GatewayPorts enabled

If not enabled, reverse connection cannot be made back to the client

Workaround is to use port forwarding utility such as socat on the login node listen
for a connection on the compute node and forward it back to the client

Reverse connection wrap-up
Offers a path to one-click connection to a remote cluster

May require assistance of a system administrator to set up, but then it is easy to
make it available to all users

Pass around a .pvsc file with configuration

Download from a URL, for example: File->Connect->Fetch Servers

Part 2
Remote visualization

Loading data
Once a client and server are connected, we are ready to load data and visualize it

To open a data file, select the File -> Open… menu item

The file dialog shows files on the file system available to pvserver

You cannot load data on the local file system as long as the connection is alive

Disconnect first to connect to the builtin server and load local data

What happens where?
Data is loaded onto the pvserver processes

Filtering is performed on pvserver

Subsets of data can be sent to the client for
local rendering

Rendering can be performed on pvserver , but
it can also be done only on the client

Client Server

Loading data
Saving geometry

Filtering
Rendering

Configure visualization
Rendered geometry

Rendering
Display

Saving/loading state
Saving screenshots

commands

images,
geometry

Where should rendering happen?
Client

Pros:

Low latency from render request to render

High frame rate

Cons:

Fewer resources on client machine

Network transfer time for geometry

Server

Pros:

No geometry to transfer to client

Can handle larger datasets

Cons:

Higher latency, lower frame rate

One image sent over network per render

Controlling where rendering happens
Usually, geometry is extracted from a dataset to
be rendered

Remote Render Threshold determines where
rendering happens

Available under Edit -> Settings/ParaView ->
Preferences

Verifying where rendering occurs

Speeding up remote rendering - low bandwidth
Still Render Image Reduction Factor -
subsample images when full quality rendering is
requested

Image Reduction Factor - subsample images
generated during interactive rendering

Image Compression - compression algorithm
and amount of compression to use

Speeding up remote rendering - high latency
Play with the LOD Threshold and LOD
Resolution to reduce geometry sent to client.

Turn on Use Outline for LOD Rendering if
decimated geometry too big for client.

Try increasing Non Interactive Render Delay

Turn up Remote Render Threshold
Allow more data to go to client

Remote visualization with Python
pvpython is a ParaView client application that can generate images from a
Python script

To connect to a pvserver on a remote system, use the Connect() function

>>> Connect(“server.host”, 11111)

Once connection is established, Python commands can be run to create filters and
generate images on the server

Questions?

