

Pulse Unity Asset User Manual

v2.0 - https://goo.gl/GK1RZW

Table of contents
Resources
Overview
Limitations
Unity components

Generating Data
PulseEngineDriver
PulseCSVReader
PulseRandomValueGenerator

Consuming vitals data
PulseDataLineRenderer
PulseDataNumberRenderer

Interacting with the patient
Examples

VitalsMonitor
CreateActionOnClick
ScreenSpace
RandomNumber

1

https://goo.gl/GK1RZW

Resources
● Asset store page: here
● Discourse forum (support): here
● Issue tracker: here
● Pulse Physiology Engine documentation: here
● Pulse Unity Asset developer documentation: here

Overview
The role of this asset is to integrate the Pulse Physiology Engine in Unity. It includes the following
directories:

● Plugins: Native and managed plugins to import part of the PulseEngine C++ API in Unity. See
the developer documentation for more information on how to update them manually.

● StreamingAssets: Data files necessary for the Pulse engine to run and process actions. You
will need to copy the contents of this inner directory to the StreamingAssets directory located in
the Assets folder of your project.

● Scripts: Files implementing components and scriptable objects that can be used to
conveniently interact with the Pulse Engine in your scene.

● Demos: Example data, scripts and scenes to showcase how to use the Pulse components.

If you need help designing a custom solution based on Pulse or want to discuss collaboration, please
contact us at kitware@kitware.com.

Limitations
● IL2CPP Build Support: The Pulse Unity Asset is not supported in Unity projects built with the

IL2CPP compiler. You can find more details in the developer documentation and receive
support on our Discourse forum.

● Missing functionality from the C++ framework: The Pulse Unity Asset only exposes a portion
of all the functionalities of the Pulse engine available in C++. The exhaustive list of functionality
is defined in the Common Data Model. If you are interested in extending the Pulse Unity Asset
to cover more of those functionalities, you can refer to the developer documentation and find
support on our Discourse forum.

2

http://u3d.as/1sp1
https://discourse.kitware.com/c/pulse-physiology-engine
https://gitlab.kitware.com/physiology/PulseUnityAsset/issues
https://pulse.kitware.com/_docs.html
https://gitlab.kitware.com/physiology/PulseUnityAsset/blob/master/README.md
https://gitlab.kitware.com/physiology/PulseUnityAsset/blob/master/README.md#plugins
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/CreatingScenes.html
mailto:kitware@kitware.com
https://gitlab.kitware.com/physiology/PulseUnityAsset/blob/master/README.md#il2cpp-build-support
https://discourse.kitware.com/c/pulse-physiology-engine
https://pulse.kitware.com/_c_d_m.html
https://gitlab.kitware.com/physiology/PulseUnityAsset/blob/master/README.md#missing-c-functionality-from-the-pulse-engine-in-the-c-assets
https://discourse.kitware.com/c/pulse-physiology-engine

Unity components
While advanced users could rely solely on the C# API of the PulseEngine imported in the plugins, we
have created some useful components meant to facilitate interacting with Pulse in Unity.

1. Generating Data
PulseDataSource is an abstract class which stores data organized per field in a PulseData scriptable
object at each MonoBehaviour.Update and exposes it to be consumed by an instance of
PulseDataConsumer. Its implemented subclasses are:

PulseEngineDriver

This is the main component for a Pulse simulation as it creates an instance of PulseEngine and
handles advancing the simulation time to maintain synchronization with the game clock. It exposes the
PulseEngine so that other components can apply actions to it (see below), and populates PulseData
with the vitals information generated by the engine, including simulation time, ECG signal, heart rate,
arterial, systolic, and diastolic blood pressures, oxygen saturation, end tidal carbon dioxide, respiration
rate, temperature, airway carbon dioxide partial pressure, and blood volume.

Note: This above list is only a subset of the outputs available in the C++ framework (learn more).

- Initial State File: initial stable state to use to start the simulation. Example files can be found in

Demos > Data > states. Because the physiology models require execution to achieve stable
calculations, several stable patient states are provided.

- Serialization Format: serialization format of the state file (JSON or BINARY).
- Time Step: simulation time step in seconds.

PulseCSVReader

This component is used to display vital sign data stored in a comma separated value (csv) file from a
previously executed pulse simulation.

- CSV Input: input TextAsset containing Pulse output data.. An example file can be found in

Demos > Data > csv.
- Time Elapsed At Start: offset time defining how many data points to read from the CSV file

when the component is enabled.

PulseRandomValueGenerator

This is a convenient component used to generate random values in a PulseData container.

3

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://pulse.kitware.com/physeng.html#SystemsInterface

- Min/Max Value: range of the values being generated.
- Variability: fraction defining how much different the next generated value will be.
- Frequency: frequency at which values are generated

2. Consuming vitals data
PulseDataConsumer is an abstract class that listens to an instance of a PulseDataSource to consume
its PulseData for a certain data field at each MonoBehaviour.LateUpdate. Its subclasses (listed
below) all inherit a custom editor with the following interface:

- Data source: instance of the PulseDataSource to read the PulseData from.
- Data field: name of the data field to consume in the PulseData container.

PulseDataLineRenderer

Renders a line (embeds a LineRenderer) that draws points based on the data field selected. One of its
parent needs a UI.Canvas component with a Render Mode set to “Screen Space - Camera” to overlay
it on the screen, or to “World Space” to place it on a 2D plane in the 3D scene. Because the embedded
LineRenderer is not part of the UI system, you can not set the canvas Render Mode to “Screen Space
- Overlay”.

- Thickness: thickness of the line renderer
- Color: color of the line renderer
- Trace Initial Line: shows a flat line at time points where there are no read values yet
- Y Min/Max: range the Y axis representing the values of the data field selected
- X Range: range of the X axis in seconds. This axis is dynamic, with the far right being “now”

(latest value), and the far left being “now - X Range”.

PulseDataNumberRenderer

Update the value of an associated UI.Text component to reflect the latest data field value. One of its
parent needs a UI.Canvas component, and its Render Mode can be selected to World Space or
Screen Space to respectively place it in the 3D world or overlay it on the screen.

4

https://docs.unity3d.com/ScriptReference/MonoBehaviour.LateUpdate.html
https://docs.unity3d.com/ScriptReference/LineRenderer.html
https://docs.unity3d.com/Manual/UICanvas.html
https://docs.unity3d.com/ScriptReference/UI.Text.html
https://docs.unity3d.com/Manual/UICanvas.html

- Prefix: text prepended to the data value.
- Suffix: text appended to the data value.
- Multiplier: number multiplied to the value (useful to show percentages).
- Decimals: number of decimals shown.
- Frequency: frequency at which the number can be updated (0:no limit).

3. Interacting with the patient
With Pulse, you can apply actions on the simulated patient to introduce changes in the engine, either
a traumatic event or a treatment step. Some of those actions involve substances circulating in the
system, from drugs to gases.

In C#, the actions need to be passed to the PulseEngine object, which is exposed in the
PulseEngineDriver component. To access it, you could elect to either:

● subclass the PulseEngineController class designed for this effect (which also enforces a
custom editor), or

● simply add a reference to a PulseEngineDriver in your custom component that defines when
to apply an action.

The exposed actions with their inputs are in the table. Examples of how they can be used are available
in the PulseActionOnClick example class, located inside Demos > Scripts . The available
substances are listed in StreamingAssets > PulseDataFiles > substances, using the same string as
the substance file name.

Action Input

Hemorrhage Rate, Type (Internal/External),
Compartment (ex. Vena Cava, Right Leg, Aorta, Spleen)

SubstanceCompoundInfusion Substance (ex. Saline), Bag Volume, Rate

AirwayObstruction Severity (0 to 1)

Intubation Type (ex. Tracheal, Off)

TensionPneumothorax Side (Right/Left), Type (Open/Closed), Severity (0 to 1)

NeedleDecompression Side (Right/Left), State (On/Off)

SubstanceBolus Substance, Concentration, Rate

AnesthesiaMachineConfiguration Connection (ex. Tube, mask), InletFlow, InspiratoryExpiratoryRatio,
OxygenFraction, OxygenSource (ex. wall), PrimaryGas,
RespiratoryRate, VentilatorPressure

Note: those are only a subset all the actions available in the C++ framework (learn more).

5

https://pulse.kitware.com/_c_d_m_tables.html#HemorrhageTable
https://pulse.kitware.com/_c_d_m_tables.html#SubstanceCompoundInfusionTable
https://pulse.kitware.com/_c_d_m_tables.html#AirwayObstructionTable
https://pulse.kitware.com/_c_d_m_tables.html#IntubationTable
https://pulse.kitware.com/_c_d_m_tables.html#TensionPneumothoraxTable
https://pulse.kitware.com/_c_d_m_tables.html#NeedleDecompressionTable
https://pulse.kitware.com/_c_d_m_tables.html#SubstanceBolusTable
https://pulse.kitware.com/_c_d_m_tables.html#AnesthesiaMachineConfigurationTable
https://pulse.kitware.com/physeng.html#ProcessActions

Examples

VitalsMonitor
This example scene showcases a full vitals monitor screen similar to the Pulse Explorer, constructed
with multiple PulseDataLineRenderer and PulseDataNumberRenderer. Its input data is generated by
a PulseEngine through the PulseEngineDriver component.

6

https://gitlab.kitware.com/physiology/explorer/wikis/home

CreateActionOnClick
This scene showcases a simple canvas in world space with a single PulseDataLineRenderer and
PulseDataNumberRenderer, using data exposed through a PulseEngineDriver. The
PulseActionOnClick component (implemented in Demos/Scripts) is added into the scene to be able
to apply an action from a preset list by pressing the “Run Action” button when the simulation is running.
These examples provide example uses of each exposed action and inputs that can be used to simulate
patient injury and treatment.

Top: Selecting an action in the PulseActionOnClick editor;
Bottom: PulseActionOnClick editor with enabled “Run Action” button when running.

Left: Capnogram and End-Tidal CO2 of an healthy patient;
Right: Same vital information after applying an airway obstruction.

7

ScreenSpace
This scene showcases a canvas in screen space (overlay) with a PulseDataLineRenderer and a
PulseDataNumberRenderer, using data exposed through a PulseCSVReader.

Left: scene view with canvas overlayed on the camera plane; Right: game view.

RandomNumber
This scene showcases a simple canvas in world space with a single PulseDataLineRenderer and
PulseDataNumberRenderer, using data generated with a PulseRandomValueGenerator.

8

