
An open-source platform for underwater image and video analytics

Matthew Dawkins1, Linus Sherrill1, Keith Fieldhouse1, Anthony Hoogs1, Benjamin Richards2, David
Zhang3, Lakshman Prasad4, Kresimir Williams5, Nathan Lauffenburger5 and Gaoang Wang6

1Kitware, Inc., {matt.dawkins, linus.sherrill, keith.fieldhouse, anthony.hoogs}@kitware.com
2NOAA Pacific Islands Fisheries Science Center, benjamin.richards@noaa.gov

3SRI International, david.zhang@sri.com
4Los Alamos National Laboratory, prasad@lanl.gov

5NOAA Alaska Fisheries Science Center, {kresimir.williams,nathan.lauffenburger}@noaa.gov
6University of Washington, gaoang@uw.edu

Abstract

Global fisheries and the future of sustainable seafood
are predicated on healthy populations of various species
of fish and shellfish. Recent developments in the collec-
tion of large-volume optical data by autonomous underwa-
ter vehicles (AUVs), stationary camera arrays, and towed
vehicles has made it possible for fishery scientists to gen-
erate species-specific, size-structured abundance estimates
for different species of marine organisms via imagery. The
immense volume of data collected by such devices quickly
exceeds manual processing capacity and creates a strong
need for automatic image analysis. This paper presents an
open-source computer vision software platform designed to
integrate common image and video analytics, such as stereo
calibration, object detection and object classification, into
a sequential data processing pipeline that is easy to pro-
gram, multi-threaded, and generic. The system provides a
cross-language common interface for each of these compo-
nents, multiple implementations of each, as well as unified
methods for evaluating and visualizing the results of differ-
ent methods for accomplishing the same task.

1. Introduction
The Magnuson-Stevens Fishery Conservation and Man-

agement Act [1], the framework for fisheries management
in the United States, requires that managed fish stocks un-
dergo periodic assessment to determine if they are over-
fished or are experiencing overfishing. A basic stock as-
sessment requires data on fishery abundance, biology (e.g.
age, growth, fecundity), and catch. While demands to con-
tinually improve stock assessments are high, a lack of ade-

Figure 1. A few examples of devices used to collect imagery
underwater, including towed vehicles (top right [25], bottom
right [13]) and a stationary camera array (left).

quate input data remains an important impediment to their
accuracy, precision, and credibility remains [12]. Recent
developments in low-cost autonomous underwater vehicles
(AUVs), stationary camera arrays, and towed vehicles has
made it possible for fishery scientists to begin using im-
agery and video to generate species-specific, size-structured
abundance estimates for different species of marine organ-
isms (see Figure 1). To this end, government agencies
and universities are increasingly employing camera-based
surveys for abundance estimation [5]. However, the vol-
ume of optical data produced quickly exceeds the capa-
bilities of human analysis. To move into operational use,
automated video analysis solutions are needed to extract
species-specific, size-structured abundance measures from
optical data streams.



Figure 2. Example optical data from the devices shown in Figure 1.

This paper presents the Video and Image Analytics for
Marine Environments (VIAME12) open-source computer
vision software platform for automating the image analy-
sis process, for applications in marine imagery or any other
type of video analytics. The system provides a common in-
terface for several algorithm stages (stereo matching, object
detection, object recognition), multiple implementations of
each, as well as unified methods for evaluating different al-
gorithms for accomplishing the same task. The common
open-source framework facilitates the development of ad-
ditional image analysis modules and pipelines through con-
tinuing collaboration within the image analysis and fisheries
science communities.

The platform can be divided into three core components:
the pipeline processing framework and infrastructure; im-
age processing elements that fit into the framework; and
auxiliary tools outside the streaming framework that pro-
vide training, GUIs and evaluation. The pipeline subsys-
tem allows image processing elements to be implemented
in the most popular languages used for computer vision, in-
cluding C, C++, Python, and Matlab. A graphical interface
is provided in the framework for visualizing individual ob-
ject detections, making new annotations, and filtering detec-
tions based on classification values. There are two separate
evaluation tools included, one for generating basic statistics
over detections compared with groundtruth (detection rates,
specificity, false alarm rate, etc.) and a second for gen-
erating receiver operating characteristic (ROC) curves for
detections which contain associated category probabilities.
Both the evaluation and GUI tools work with either single
frame object detections, or spatiotemporal object tracks.

The platform has been released as open-source software
on github. Multiple object detectors tuned to different types

1http://www.viametoolkit.org
2https://github.com/Kitware/VIAME

of marine imagery have been integrated, with results shown
in Section 4. The provided evaluation elements are also
available, with example computed metrics and ROC curves
for select detection problems shown in Section 6. It is an-
ticipated that the marine research community will continue
to adopt the framework, enabling collaboration and re-use
of modules across different research groups working on re-
lated problems. Although the framework is primarily being
used for marine imagery at present, it is based on a more
generic pipelined vision processing system that applies to
video analytics in any domain. It is hoped that the general
vision community would find the framework useful and that
a vibrant open-source community will develop around the
platform.

2. Related Work

There are currently many open-source computer vision
packages available on the internet. Many of the most pop-
ular repositories, such as OpenCV [4], Caffe [15], and
Theano [2], typically contain lower-level functions for im-
age processing operations but lack full end to end process-
ing pipelines that combine multiple stages of processing in
a streaming architecture. Our pipeline framework also al-
lows input and output endcaps to be easily reconfigured; for
example, core algorithmic pipelines can get input data from
a UDP streaming source instead of a video or image list
reader via a simple config file change. Pipeline architec-
tures and system settings can be changed easily in the same
config file with recompilation. Most current computer vi-
sion toolkits also lack standard input and output formats for
storing output products, such as object detections, which are
contained within our framework. These standard outputs
are designed to work with the included GUI and evaluation
tools.

At the other end of the spectrum, there are several open-
source media streaming frameworks such as GStreamer
[23] and FFmpeg [3]. These libraries were designed, how-
ever, primarily for multimedia applications and not explic-
itly for image and video processing. One of the key ele-
ments of our pipeline framework is an individual process

Figure 3. Simple pipeline abstraction containing an image reader,
an arbitrary object detector, an output display, and an output writer
process.



Figure 4. An overview of an individual process. All items, such as the number of ports, types of ports, main step function, and green
auxiliary functions are optionally defined by process implementers. The algorithm itself can either live within the process, or be a wrapper
around an external repository or binary.

class definition, which contains definable subroutines for
loading model files at the beginning of processing, in ad-
dition to defining what actions to perform when new data
is received (typically a new image in a video sequence, or
a new metadata packet). These useful elements do not ex-
ist in GStreamer and FFmpeg. The platform also contains
common data types for passing between process nodes, and
base classes to simplify defining specific types of algorithm
processes, e.g. separate base classes for object detectors
and stereo correspondence algorithms. Finally, our frame-
work allows pipelines to be defined using a directed graph,
which is more general than the simple linear pipelines of
GStreamer and FFmpeg. The platform manages the com-
plexity of inter-process synchronization, communications
and dependencies, which can be tricky and problematic to
program correctly in other frameworks.

In the marine science environment, computer vision has
yet to reach its full potential. There is some work in
techniques for automated detection, identification, measure-
ment, tracking, and counting fish in underwater optical data
streams [9, 6, 7, 8, 14, 20, 21]. However, few of these sys-
tems are fully automated, with all of the functions required
to produce highly successful and accurate results [22]. Con-
sequently there is little operational use of automated anal-
ysis. Furthermore, researchers and algorithms tend to re-
main specialized in a specific type of fish and/or collection
system, whereas there may be significant gain in efficiently
experimenting across domains. The proposed framework
facilitates such collaborations and experiments by making
it easy and cheap to share algorithms, implementations, and
data.

3. Architecture

Two key features provided by this software, VIAME, are
common data types and a stream processing toolkit called
Sprokit. Sprokit allows the users to configure multiple pro-

cessing elements in a graphical pipeline, such as in Fig-
ure 3, while the common data types are used as “edges”
in the graph. Individual nodes within this pipeline are im-
plemented within plugin modules, both for compartmental-
ization and to allow modules to be easily shared.

3.1. Pipeline Framework

Sprokit implements a processes and pipes data flow ap-
plication structure, and an easy way to describe and run
these type of applications. There are several advantages to
implementing this type of application. The main benefit for
VIAME is easily interchangeable modules enabled by using
common data types. For example, if one team produces a
color correction algorithm, it can then be easily integrated
into anothers applications or pipelines.

The main unit of construction of these pipelines is the
process. A process is a class that derives from the Sprokit
base process class and implements a specific operation.
Both C++ and python implementations of the base class
are supported, key portions of a process are shown in Fig-
ure 4. The main feature of a process are its input and output
ports that are used to transfer data. The typical process life-
cycle starts with creating a new object of the desired pro-
cess type. This new process is then called on its configure
method and passed the set of configuration items for it to
use. The process uses this configuration data to establish
operating parameters. In the case of algorithm wrapping
processes, these configuration options will specify which
implementation to use and how it should be configured. Af-
ter all processes are configured, the pipeline is created by
connecting process outputs to process inputs. The process
is now ready to start processing and its step method is called
where it reads from the input ports, processes the data and
puts the results on the output ports.

Processes are designed to implement a single well de-
fined operation so that a solution can be created by con-
necting these elements. Having a fine-grained approach to



breaking an overall application into smaller processes pro-
motes reuse and sharing of the processing elements. In ad-
dition, it improves the ability to parallelize the solution.

3.2. Plugin Architecure

The VIAME platform is built on the concept of dynam-
ically loadable plugins. A plugin is physically a shared li-
brary that contains an implementation of software compo-
nents. The VIAME toolkit supports two types of plugins, al-
gorithms and processes. These plugins are discovered at run
time and added to their respective internal registries. The

# P r o c e s s d e f i n i t i o n s and c o n f i g s
#
p r o c e s s i n p u t

: : f r a m e l i s t i n p u t
: i m a g e l i s t f i l e i n p u t f i l e s . t x t
: f r a m e t i m e 0 .3333
: i m a g e r e a d e r : t y p e ocv

p r o c e s s d e t e c t o r
: : i m a g e o b j e c t d e t e c t o r
: d e t e c t o r : t y p e e x f i s h d e t e c t o r
: d e t e c t o r : model1 m o d e l f i l e . xml
: d e t e c t o r : t h r e s h o l d 0 . 2 0

p r o c e s s draw
: : d r a w d e t e c t e d o b j e c t b o x e s
: d e f a u l t l i n e t h i c k n e s s 3

p r o c e s s d i s p
: : v iew image
: a n n o t a t e i m a g e t r u e
: p a u s e t i m e 2 . 0
: t i t l e VIAME images

# G lo ba l p i p e l i n e c o n f i g s
#
c o n f i g p i p e l i n e : ed ge

: c a p a c i t y 5

# C o n n e c t i o n s between p r o c e s s e s
#
c o n n e c t from i n p u t . image

t o d e t e c t o r . image

c o n n e c t from d e t e c t o r . d e t e c t e d o b j e c t s e t
t o draw . d e t e c t e d o b j e c t s e t

c o n n e c t from i n p u t . image
t o draw . image

c o n n e c t from i n p u t . t imes t amp
t o d i s p . t imes t amp

c o n n e c t from draw . image
t o d i s p . image

Table 1. Example simple detector pipeline config file.

locations searched for plugins can be easily customized for
any desired installation layout. The advantages from a soft-
ware engineering perspective are reduced coupling between
software components. For example, a plugin could be built
that uses OpenCV without introducing that dependency into
the core VIAME libraries. After a plugin is created (algo-
rithm or process), it can be individually distributed and used
by others without requiring any new source code or rebuild-
ing steps.

Algorithms and processes are structured in a polymor-
phic class hierarchy. The algorithm base class is defined
in VIAME for all basic operation types, such as image fil-
ters, object detectors, and detection refining. Instantiating
the concrete implementation of an algorithm is handled by
a class factory mechanism built into VIAME and controlled
by user supplied configuration entries. These config entries
specify the implementation type to use in addition to other
implementation related parameters. Abstracting the algo-
rithm details into a configuration file makes it easy to utilize
different implementations without requiring programming
expertise to modify the source code. Algorithm configura-
tions can be directly created and modified by subject matter
experts or, in the future, by using GUI tools.

To meet the need of the research community, algorithms
can be implemented in C++, Python or Matlab. The C++
implementations are implemented in a class derived from
the abstract base class. Matlab implementations are a set of
Matlab script files that implement the interface mediated by
a C++ to Matlab adapter.

Algorithms can be instantiated and used directly in a
program, or within a Sprokit process. VIAME supplies a
set of processes that support base abstract algorithm defi-
nitions. These can be considered algorithm wrapper pro-
cesses which instantiate the configured algorithm then pass
the process inputs to the algorithm. Algorithm outputs are
passed downstream to the next process. This approach pro-
vides algorithm level agility along with functional or topo-
logical agility.

3.3. Basic Processes and Pipelines

In addition to processes containing image processing al-
gorithms, there are a number of utility processes in the sys-
tem for performing tasks such as reading/writing object de-
tections and imagery, drawing detections on images, dis-
playing detections in a simple GUI, and others. An exam-
ple pipeline is elaborated in Table 1 which creates an object
detector alongside a few helper processes. Contained in this
file is the definition of all processes in the pipeline, the data-
flow between processes, and any configuration values that
each process requires.



Figure 5. BenthosDetect as a plugin module in VIAME. Left: pipeline configuration. Middle: BenthosDetect flow diagram. Right:
configuration parameters are initialized in a user configuration file and loaded up by VIAME at run time.

3.4. Third Party Library Support and Build System

Cross-platform build support for most operating systems
(Windows, Mac, Linux) is provided via using CMake [17]
instead of only a single-platform build system. Many lead-
ing open-source vision libraries involving C/C++ also cur-
rently use CMake [4, 15]. Within the platform are multiple
enable flags to turn on support for different third party li-
braries, such as OpenCV, Python and Matlab. Every indi-
vidual plugin in the system also contains a corresponding
enable flag, in order to compartmentalize code and allow
users to only build what they need. When a certain enable
flag is set, all dependencies for the plugin are also automat-
ically turned on and built internally, in order to use as little
system packages as possible and simultaneously require few
dependencies when building the platform on a fresh system.
Alternatively this feature can be turned off, if developers
wish to build or install all dependency packages themselves
externally.

4. Example Algorithm Modules

A number of initial algorithm modules have either been
implemented or wrapped within the platform. There are a

Figure 6. Types of sea creatures used in training: background:
0, black eelpout:1, crab:2, longnose skate:3, north pacific hake-
fish:4, rexsole:5, rockfish:6, sea anemone:7, seasnail:8, seau-
rchin:9, starfish:10, sunflowerstar:11.

number of ways to accomplish this based on whether or not
the submodule is hosted externally on its own website, or if
all of its core code rests within VIAME. Some modules are
specific to individual applications, though others are more
general and can be retrained to solve novel problems. A few
select examples are detailed in the following sections.

4.1. BenthosDetect

BenthosDetect detects and identifies fish and benthic or-
ganisms that live in and on the bottom of the ocean floor.
The BenthosDetect module is its own loadable plugin in the
VIAME system. The core functions of the module were
written in C++ and wrapped with python by boost-python.

BenthosDetect generates regions of interest from an opti-
cal flow segmentation [26] and object proposals (e.g., selec-
tive search [24]), as shown in Figure 5. Object proposals are
based on local spatial features and flow segmentation group

Figure 7. Example of benthic organisms detected by BenthosDe-
tect. Each region of interest is classified by a pretrained network
and color bounding boxes are used to show types. Green boxes
indicate non-organism.



Figure 8. ScallopTK detector architecture. Candidate detection locations are extracted from the input image by four techniques, which are
then classified according to a combination of handcrafted and automatically learned features.

features based on local optical flow magnitude and orienta-
tions. Each region is processed by a pretrained deep con-
volutional neural network (CNN). The best score among all
types determines the type of fish detected for this ROI. The
modified Non-Maximum Suppression removes overlapped
regions that have less score [26]. The outputs are the de-
tected bounding boxes and corresponding types of sea crea-
tures per frame.

The benthic organisms used in the training were anno-
tated based on data collected at the Monterey Bay Aquarium
Research Institute. 12 types of sea creatures (˜12,000 sam-
ples) were trained from an annotated 1/2 hour video with no
data augmentation. The classifier was tested on annotated
ROI images from a separate section of video and tested as
shown in Figure 6. The macro-averaging performance of
detection from the ROC is 0.70 from the dataset. An exam-
ple of detection on a frame is shown in Figure 7.

4.2. ScallopFinder

ScallopFinder is an algorithm being developed that is
based on exploiting geometric and spectral properties of
scallops. It is currently prototyped in Matlab and does not
require training. Edge pixels from a canny edge detector
are used to hypothesize circles by finding best fits for edge

Figure 9. Detections of adult scallops, baby scallops, and sand dol-
lars by ScallopFinder.

pixel chains using a circle fitting routine. The pixel RGB
values are converted to HSV values and treated as a three-
dimensional distribution. Next, the substrate is used as a
reference to detect objects embedded in it that are spec-
trally distinct from the benthic substrates ambience. This
is carried out by computing the Mahalanobis distance of
each pixel HSV value from the mean of this distribution. A
multiplicative filter on the distances is applied to bias them
towards higher red hue and saturation. Thus, pixels that are
distinct from the dominant background, and that are redder
have a higher value in a reconstituted image. The hypothe-
sized circles from the edge detection are then sampled both
on the inside and the outside with respect to the reconsti-
tuted image pixels to obtain the aggregate brightness (red-
filtered Mahalanobis distance) and the disparity between its
interior and exterior samples. Circles with brightness and
disparity above the respective median values are chosen as
candidate detections. This narrows down the objects on the
benthic substrate to scallops and sand dollars.

4.3. ScallopTK

The Scalable Adaptive-Localization and Laplacian Ob-
ject Proposal Toolkit (ScallopTK) Detector [11] is a mod-
ule which is useful as a general object detector for detect-
ing any objects which are either blob or ellipse-like. It was
created primarily to detect shellfish and address the chal-
lenges with detecting them, such as differentiating between
distractor categories (e.g. rocks, sand dollars), live organ-
isms, and dead organisms. For each input image, the sys-
tem generates many initial candidate regions of potential
shellfish, and then classifies each region using a combina-
tion of AdaBoost pre-classifiers and a convolutional neural
network (CNN) applied on top of sized-normalized image
chips extracted around each candidate. The optional Ad-
aBoost pre-classifiers are applied to manually-created fea-



Figure 10. Video viewer example. The left panel shows an entry
for every spatiotemporal object track, and its corresponding cate-
gory probability.

tures, and used as a speed optimization for reducing the
number candidates evaluated by the CNN to a reasonable
number. This full pipeline is shown in Figure 8.

4.4. FishRuler

The FishRuler plugin attempts to detect fish in video in
order to estimate population abundance and size distribu-
tions for particular species of fish. It detects fish via a gaus-
sian mixture model (GMM) segmentation, followed by as-
sorted heuristics to filter detections based on whether or not
they are likely to contain just one or multiple fish. His-
togram of oriented gradient classifiers [10] are used on ori-
ented extracted image chips around each detection to clas-
sify fish species. Any detection likely to contain multiple
fish in the same connected-component blob is not used for
the final size estimation step. The module itself is cur-
rently broken into two processes. A detector process which
outputs detections from the GMM, and a classifier process
which accepts detections alongside an input image, and pro-
duces species classification scores.

4.5. General Object Detectors

Faster R-CNN [19] was added to the platform as one
of the initial object detector examples due to its generality.
Unlike the hand-made object proposal generators of Ben-
thosDetect, ScallopFinder, and ScallopTK, Faster-RCNN
attempts to learn an object proposal detector using a custom
region proposal network CNN architecture. The same fea-
tures generated by this network are also re-used for proposal
classification. In addition to Faster-RCNN we also plan on
adding other high-scoring general object detectors, such as
YOLO [18] and SSD [16] to serve as baseline object detec-
tors when encountering novel problems in the domain.

Figure 11. Image viewer example. The right hand bar has a filter
for selecting which categories to show, in addition to an optional
threshold on probabilities. Both computed (blue) and groundtruth
(red) detections are shown in this example.

5. Command Line and GUI Interfaces

There are currently two graphical user interfaces (GUIs)
in the platform. Both can display either object tracks or ob-
ject detections and their associated probabilities, though one
is geared more towards video and the other raw images. Ex-
amples of both are shown in Figures 10 and 11 respectively.
In addition to displaying object detections, the GUIs can be
used to manually generate groundtruth detections or tracks,
for use with either model training or evaluation. Outside of
the GUIs there are a number of core command line tools to
assist with running pipelines and other functionality. “Pro-
cessopedia” outputs all known processes in the system that
can be configured, “PipelineRunner” assists with running
pipelines and inputting any extra parameters, and “Plugin-
Explorer” lists all known plugin modules.

6. Evaluation and Experimentation

Using manual ground truth annotations, we have started
comparing different variants of integrated modules within
the platform. There are two tools which accomplish this,
one for ROC generation and one for generating fixed evalu-
ation metrics (detection rate, false alarm rates, etc). Both
of these tools can score either individual object detec-
tions, spatiotemporal object tracks, or spatiotemporal events
against some groundtruth. Due to the multitude of different
ways to score the same problem, the evaluation tools have
evolved to contain a number of input parameters over time,
such as the spatial and temporal overlap criteria of com-
puted on groundtruthed tracks. Figure 12 shows an exam-
ple ROC generated by these tools comparing several detec-
tor variants in the system for the same problem, and Table 2
shows an example fixed metric output.



D e t e c t i o n−Pd : 0 .791209
D e t e c t i o n−FA : 213
D e t e c t i o n−PFA : 0 .515738
Frame−NFAR: n o t computed
Track−Pd : 0 .791209
Track−FA : 213
Computed−t r a c k−PFA : 0 .515738
Track−NFAR: n o t computed
Avg t r a c k ( c o n t . , p u r i t y ) : 1 . 3 4 , 1
Avg t a r g e t ( c o n t . , p u r i t y ) : 1 . 4 7 , 0 . 7 9
Track−frame−p r e c i s i o n : 0 . 5

VIAME−Hash : ” a2123cde ”

Table 2. Example “score tracks” tool output. In this case, only
single-frame object detections were scored on the same scenario
as in Figure 12, therefore the track and detection Pd (Percent de-
tection) statistics are equivalent.

7. Conclusion

In addition to including several state-of-the-art algo-
rithms with the ability to run and compare them in oper-
ational pipelines, our platform contains multiple features
which aid in the rapid integration of new algorithms into the
framework. Future work will involve the addition of new al-
gorithm types (such as habitat classification and additional
object trackers), the integration of new algorithms, adding
new types of GUIs to the system, and additional general
system improvements. The ability to configure and change
algorithm pipelines in a GUI will be a useful addition as
well as a useful debugging tool. We also plan on adding a
database, along with the ability to ingest a video and per-
form queries on arbitrary concepts, such as performing a
search for all instances of a particular species that a prede-
fined detection model doesn’t already exist for (i.e. search
by example). This could be accomplished, for example, by
performing iterative query refinement on top of CNN de-
scriptors generated around general object proposals.

The open-source, modular nature of this system facili-
tates the development of a versatile and dynamic platform
capable of addressing current and future needs in automated
image processing. Much of the existing code for automated
image analysis and video analytics in the maritime domain
is unique to a specific sensor, data type, or research ques-
tion. We hope that the development of this architecture will
lead to more complete and versatile pipelines, capable of
taking the novice image analyst from imagery to data with
minimal effort. We hope that the development of this sys-
tem will catalyze a community of developers to build upon
this work to develop and integrate new algorithms and ca-
pabilities to meet the ever-changing needs of the marine sci-
ence, fisheries and wildlife communities.

Figure 12. Example ROCs generated by the system comparing dif-
ferent detectors. In this case, a 500 image test sequence containing
scallops (the targets of interest in this experiment) was used. Both
ROCs show the same content, though the bottom image shows log-
arithmic scaling of the x-axis.

8. Acknowledgement

Initial development and testing of VIAME was funded
by the NOAA Fisheries Strategic Initiative on Automated
Image Analysis. The findings and conclusions in the pa-
per are those of the authors and do not necessarily represent
the views of the National Marine Fishery Service, NOAA,
or the government of the United States. The use of trade,
firm, or corporation names in this publication is for the con-
venience of the reader and does not constitute an official
endorsement or approval of any product or service to the
exclusion of others that may be suitable.

References
[1] Magnuson-Stevens Fishery Conservation and Management

Act. Public Law, 94:265, 1996.
[2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good-



fellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and
Y. Bengio. Theano: new features and speed improvements.
arXiv preprint arXiv:1211.5590, 2012.

[3] F. Bellard, M. Niedermayer, et al. FFmpeg. Available from:
http://ffmpeg.org, 2012.

[4] G. Bradski and A. Kaehler. Learning OpenCV: Computer
vision with the OpenCV library. ” O’Reilly Media, Inc.”,
2008.

[5] M. Cappo, E. Harvey, and M. Shortis. Counting and measur-
ing fish with baited video techniques-an overview. In Aus-
tralian Society for Fish Biology Workshop Proceedings, vol-
ume 1, pages 101–114, 2006.

[6] M.-C. Chuang, J.-N. Hwang, F.-F. Kuo, M.-K. Shan, and
K. Williams. Recognizing live fish species by hierarchical
partial classification based on the exponential benefit. In
2014 IEEE International Conference on Image Processing
(ICIP), pages 5232–5236. IEEE, 2014.

[7] M.-C. Chuang, J.-N. Hwang, and K. Williams. Supervised
and unsupervised feature extraction methods for underwater
fish species recognition. In Computer Vision for Analysis
of Underwater Imagery (CVAUI), 2014 ICPR Workshop on,
pages 33–40. IEEE, 2014.

[8] M.-C. Chuang, J.-N. Hwang, and K. Williams. A fea-
ture learning and object recognition framework for under-
water fish images. IEEE Transactions on Image Processing,
25(4):1862–1872, 2016.

[9] M.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler.
Multiple fish tracking via viterbi data association for low-
frame-rate underwater camera systems. In 2013 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS2013),
pages 2400–2403. IEEE, 2013.

[10] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[11] M. Dawkins, C. Stewart, S. Gallager, and A. York. Auto-
matic scallop detection in benthic environments. In Applica-
tions of Computer Vision (WACV), 2013 IEEE Workshop on,
pages 160–167. IEEE, 2013.

[12] R. Deriso, T. Quinn, J. Collie, R. Hilborn, C. Jones, B. Lind-
say, A. Parma, S. Saila, L. Shapiro, S. Smith, et al. Improving
fish stock assessments, 1998.

[13] S. M. Gallager, H. Singh, S. Tiwari, J. Howland, P. Rago,
W. Overholtz, R. Taylor, and N. Vine. High resolution under-
water imaging and image processing for identifying essen-
tial fish habitat. In Report of the National Marine Fisheries
Service Workshop on Underwater Video Analysis, page 50,
2004.

[14] Z. Gu, R. Wang, J. Dai, H. Zheng, and B. Zheng. Automatic
searching of fish from underwater images via shape match-
ing. In OCEANS 2016-Shanghai, pages 1–4. IEEE, 2016.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM, 2014.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed.
SSD: Single shot multibox detector. arXiv preprint
arXiv:1512.02325, 2015.

[17] K. Martin and B. Hoffman. Mastering CMake. Kitware,
2010.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. arXiv
preprint arXiv:1506.02640, 2015.

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages
91–99, 2015.

[20] A. Salman, A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Sea-
ger, and E. Harvey. Fish species classification in uncon-
strained underwater environments based on deep learning.
Limnology and Oceanography: Methods, 14(9):570–585,
2016.

[21] F. Shafait, A. Mian, M. Shortis, B. Ghanem, P. F. Culver-
house, D. Edgington, D. Cline, M. Ravanbakhsh, J. Seager,
and E. S. Harvey. Fish identification from videos captured
in uncontrolled underwater environments. ICES Journal of
Marine Science: Journal du Conseil, page fsw106, 2016.

[22] M. R. Shortis, M. Ravanbakskh, F. Shaifat, E. S. Harvey,
A. Mian, J. W. Seager, P. F. Culverhouse, D. E. Cline, and
D. R. Edgington. A review of techniques for the identifi-
cation and measurement of fish in underwater stereo-video
image sequences. In SPIE Optical Metrology 2013, pages
87910G–87910G. International Society for Optics and Pho-
tonics, 2013.

[23] W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and S. Kost.
GStreamer Application Development Manual. Publicado en
la Web, 2013.

[24] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. Interna-
tional journal of computer vision, 104(2):154–171, 2013.

[25] K. Williams, R. Towler, and C. Wilson. Cam-trawl: a com-
bination trawl and stereo-camera system. Sea Technology,
51(12):45–50, 2010.

[26] D. Zhang, G. Kopanas, C. Desai, S. Chai, and M. Piacentino.
Unsupervised underwater fish detection fusing flow and ob-
jectiveness. In 2016 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 1–7. IEEE, 2016.


