
In Situ Analysis and Visualization

with SENSEI

13 November 2017

Supercomputing 2017

Welcome! Why are we here?

Problem: FLOPS >> I/O, potential for

lost science

Approach: do as much processing as

possible while data still resident in

memory?

Why This Tutorial? To inform you of

issues involved, to show you what

technologies are available and how to

use them.

Outline

• Introduction to In Situ Analysis and Visualization

• SENSEI In Situ Data Interface

• Instrumenting data sources and endpoints (C++)

• SENSEI In Situ Demonstrations with Coupled Infrastructures

– Data extracts with Libsim

– Computational monitoring with ParaView Catalyst

– Autocorrelation with ADIOS

– Using SENSEI via Python

• In Situ Costs and Performance

• Closing thoughts

What are the problems?

Not enough I/O capacity on current HPC systems, and

the trend is getting worse.

If there’s not enough I/O, you can’t write data to

storage, so you can’t analyze it: lost science.

Energy consumption: it costs a lot of power to write

data to disk.

Opportunity for doing better science (analysis) when

have access to full spatiotemporal resolution data.

Five orders of magnitude between compute and I/O

capacity on Titan Cray system at ORNL

Computation

125 PB/s

Node memory

4.5 PB/s
Node memory

4.5 PB/s

Interconnect

24 TB/s

Storage

1.4 TB/s

Interconnect

24 TB/s

O(2)

O(2)

O(1)

Image courtesy Ken Moreland

The problem is not going away

Data courtesy A. Geist (ORNL)

What is in situ data analysis and visualization?

Two use models:

• Post processing (post hoc): save to disk, then later, a separate

analysis/vis program reads that data and operates on it.

• In situ processing: process data as it produced without writing to

and reading from storage. Processed “in place”.
– Many flavors/terms: tightly coupled, loosely coupled, in transit, co-processing, etc.

– Practical view: anything processed but not written to persistent storage is in situ

Simulation Cores

In Situ/In Transit Cores

In situ – no data

movement:

Simulation and in

situ methods

share memory

In transit – data

is moved:

Simulation and

in situ methods

do not share

memory

The story is much more interesting than “in situ” vs.

“in transit”

In situ vs. in transit is an

oversimplification of a much richer

problem space

The “In Situ Terminology Project”

• A community effort (>50

participants)

• Identify “basis vectors” for describing

aspects of in situ processing

– Integration Type, Proximity,

Access, Division of Execution,

Operation Controls, Output Type

Co-processingIn Transit

In Situ

In Situ

In situ: an ”umbrella definition”

In situ is term that covers a lot of

territory:

In Situ Terminology project:

http://ix.cs.uoregon.edu/~hank/insituterminology/

Community effort to identify basis vectors and name them.

http://ix.cs.uoregon.edu/~hank/insituterminology/

In situ has been around a long time: ancient history

E. Zajac, CACM 7(3), Mar 1964.

Direct-to-film process (simulation, calligraphic

display exposes film) movie of a satellite

orbiting a planet.

Is this in situ?

• Yes: no data ever landed on disk.

Why did he do it?

• “Standard practice” for that era, and many

years that followed: direct-to-media more

efficient.

Link to movie page

http://www.historyofinformation.com/expanded.php?id=1002

The 1990s: the golden era of coprocessing

Main idea: systems/methods that support

interactive computation, computational

monitoring and steering.

Packages from this era (partial list):

• pV3: custom distributed memory code

(Haimes)

• AVS: co-routine processing (serial, mostly)

• CUMULVS: distributed memory M-to-N

visualization, steering (based on PVM)

(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling

a multi-phase reservoir simulator with AVS.

Common design patterns of 1990s

Rank 0 Rank N…

Client

GUI

Many-to-one: AVS

Rank 0 Rank N…

GUI

Rank 0 Rank N

Client

“Tightly coupled”: pV3,

custom projects

Rank 0 Rank N…

GUI

Rank 0 Rank M

Client

“Loosely coupled”, M-to-

N: CUMULVS

…

Computational steering – human in the loop

Main idea: rapid convergence

Example: protein structure prediction, find

optimal-energy conformation from initial

conditions (NP-hard problem)

Approach:

• parallel computations that minimize

energy for individual conformations

• User can examine any of these, perform

manual tweaks to get “unstuck” from

local minimum, then resume

calculations.
O. Kreylos, N. Max, B. Hamann, S.

Crivelli, W. Bethel. Interactive Protein

Manipulation. IEEE Vis 2003, Best

Application Paper award.

Integrated computational environments

• Simplify building, running

codes

• Many add-on capabilities for

vis, analysis, debugging,

data I/O, etc.

Examples: SCIRun, Cactus

Application (sample): parallel

binary black hole merger

computation, in transit vis

wins SC Bandwidth

Challenge (2000, 2001,

2002)
14

Resources used in SC 2002 Bandwidth

Challenge, in transit workflow

Explorable extracts

Basic ideas:

• Overcome in situ primary weakness: know

before you go.

• Use in situ computation to produce reduced-

size datasets, e.g., images, data subsets,

“extracts” like collections of features, etc.

• These “data extracts” are much smaller in size

compared to doing full resolution data I/O.

• Use some post-processing tool to

view/analyze/interact with these extracts.

Climate modeling example using Catalyst and

Cinema in our STAR paper.

Chen et al., Interactive, Internet Delivery of Visualization

via Structured, Prerendered Multiresolution Imagery.

TVCG 14(2), 2008.

Bauer, et al., In Situ Methods, Infrastructures, and Applications on HPC Platforms,

a State-of-the-Art (STAR) Report, Computer Graphics Forum, 35(3), 2016.

In situ projects over the years (approximate, partial)

1964: Zajac, direct-to-film animations

1990s: Code coupling, computational

steering:

AVS

pV3

CUMULVS

2000s (early): Integrated Computational

Environments:

SCIRun

CACTUS

2000s (late): Computing Extracts for Post

Hoc Use

Multiresolution, precomputed images

Topology

Geometry

Present day:

VisIt/Libsim, Paraview/Catalyst: scalable

vis infrastructure accessible in situ

ADIOS: I/O library approach

SENSEI: generic in situ interface

Other nascent efforts

Roadmap of In Situ Software Infrastructure for Today

SENSEI Generic In Situ Interface

Miniapps from

SENSEI software

collection, C++ and Python

Sim codes:

LAMMPS, AVF-LESLIE

ADIOS
ParaView/

Catalyst

VisIt/

Libsim

Other

endpoints or

methods:

OSPray, etc.

Generic processing sequence (sim code view)

Initialize

Here’s some data,

do something with it

Finalize

Here’s where things get interesting.

This could be an entry point into some significant

processing, like a complex distributed workflow.

Tutorial VM & web-site

• USB drive available which contains:

• All demos shown here

• A pdf of the slides for reference

• Includes hidden slides with more details not covered here due to time

restrictions

• www.sensei-insitu.org/tutorials web-site also has this information

http://www.sensei-insitu.org/tutorials

SENSEI In Situ Data Interface

Can WE….

Enable use of any in situ framework?

Develop analysis routines that are portable between codes?

Make it easy to use?

The current problem set

Libsim
www.olcf.ornl.gov/center-projects/adios

wci.llnl.gov/simulation/computer-codes/visit

www.paraview.org/in-situ

In situ infrastructures

Relatively new

• Until recently, ad hoc, proof-of-concept prototypes

• However, several production quality in situ infrastructures have emerged

ADIOS provides tools for in situ I/O and some analysis

• ADIOS allows simulations to adopt in situ techniques by leveraging their advanced I/O

infrastructures that enable co-analysis pipelines rather than changing the simulator.

• The non-intrusive integration provides resilience to third party library bugs and possible jitter in the

simulation.

ParaView and VisIt both provide tools for in situ analysis and visualization

• ParaView Catalyst can be tightly or loosely linked to a simulation, allowing the simulation to share

data with Catalyst for analysis and visualization.

• Similar capabilities are available within VisIt with the Libsim library.

• Catalyst (through Live), Libsim, and ADIOS enable the opposite flow of information, sending data

from the client to the simulation, enabling the possibility of in situ and/or monitoring/simulation

steering.

Our approach

Data model

• The lingua franca allowing an analyses to access simulation data
consistently across a variety of simulations

Data adaptor

• Convert simulation data to/from the data model

API

• For instrumenting simulation and driving analyses

Library

• Providing off the shelf access to Libsim, Catalyst and ADIOS capabilities

Write once run everywhere

The SENSEI API enables connection of simulation data sources to

visualization and analysis back ends

• From the perspective of the simulation, the back ends(analysis/vis codes)

are interchangeable

The SENSEI data model enables viz & analysis codes to access data through

a unified API.

• From the perspective of the analysis/visualization code, data

sources(simulations) are interchangeable

Data model: VTK

Used by ParaView Catalyst and VisIt/Libsim

Supports common scientific dataset types

On going independent efforts to evolve for exascale

Supports using simulation memory directly (zero-copy) for multiple

memory layouts

www.vtk.org

data model

simulation analysis analysis analysis

vtkDataSet subclasses

vtkImageData

vtkUniformGrid

vtkPolyData

vtkStructuredGrid

vtkUnstructuredGrid

vtkRectilinearGrid

www.vtk.org/doc/nightly/html/classvtkDataSet.html

http://www.vtk.org/doc/nightly/html/classvtkDataSet.html

Field information

Store information defined over grids

Stored in concrete classes that derive

from vtkDataArray

– vtkFloatArray

– vtkIntArray

– vtkDoubleArray

– vtkUnsignedCharArray

– …

Point data Cell data

Architecture

bridge

data

adaptor

analysis

adaptor
simulation analysis

bridge

data

adaptor

analysis

adaptor
simulation analysis

The data adaptor

• Provides the API through which data is accessed

• Converts simulation data structures into VTK data structures on demand

– Try make use of VTK’s array zero copy facility

• Is used by the analysis adaptor to access simulation data on demand

data

adaptor

sensei::DataAdaptor pure virtual class

/// DataAdaptor is an abstract base class that defines the SENSEI data interface.
class DataAdaptor : public vtkObjectBase
{
public:

/// Return the data object with appropriate structure.
virtual vtkDataObject* GetMesh(bool structure_only = false) = 0;

/// Adds the specified field array to the mesh.
virtual bool AddArray(vtkDataObject* mesh, int association, const std::string& arrayname) = 0;

/// Return the number of field arrays available.
virtual unsigned int GetNumberOfArrays(int association) = 0;

/// Return the name for a field array.
virtual std::string GetArrayName(int association, unsigned int index) = 0;

/// Release data allocated for the current time step.
virtual void ReleaseData() = 0;

/// Convenience method to set and get the time
double GetDataTime();
void SetDataTime(double time);

/// Convenience method to set and get the time step
int GetDataTimeStep();
void SetDataTimeStep(int index);

};

bridge

data

adaptor

analysis

adaptor
simulation analysis

The analysis adaptor

• Provides the API for driving the analysis

• Invoked by the bridge through the simulation when it is time for analysis

• You pass in a data adaptor instance, which the analysis code uses to access

simulation data structures

analysis

adaptor

sensei::AnalysisAdaptor pure virtual class

/// @brief AnalysisAdaptor is an abstract base class that defines
/// the analysis interface.
class AnalysisAdaptor : public vtkObjectBase
{
public:

/// @brief Execute the analysis routine.
virtual bool Execute(DataAdaptor* data) = 0;

};

ConfigurableAnalysisAdaptor

• Generalized SENSEI analysis adaptor reads in XML file specifying what

available analyses to compute during a simulation run

• Can be used with internal SENSEI analyses, ADIOS, ParaView Catalyst,

and VisIt/Libsim endpoints

• Specifies which analysis endpoints and what in situ analyses to use

<sensei>

<analysis enabled="1" type="catalyst" pipeline="pythonscript"

filename="slice_contourcut.py"/>

<analysis enabled="0" type="autocorrelation" array="data" association="cell"

window="10" k-max="3"/>

<analysis enabled="1" type="adios" filename="oscillators.bp" method="MPI"/>

<analysis enabled="0" type="libsim" options="-no-icet" plots="Pseudocolor"

plotvars="cell_data" slice-origin="32.5,32.5,32.5" slice-normal="0,0,1"

image-filename="slice%ts" image-width="1600" image-height="1600"

image-format="png"/>

</sensei>

bridge

data

adaptor

analysis

adaptor
simulation analysis

The bridge

• Is where you create, initialize, and manage your data and analysis adaptors

• Is where you execute the analyses adaptors as needed

• Typically consists of 3 functions: Initialize, Compute and Finalize

Instrumenting Data Sources and

Endpoints with SENSEI

Instrumentation tasks

1. Data

– Decide if you can use sensei::VTKDataAdaptor

– Or write an adaptor derived from sensei::DataAdaptor

2. Analysis

– Decide if you can use existing analyses: Libsim, Catalyst, Adios, etc

– And/Or implement new analyses derived from sensei::AnalysisAdaptor

3. Bridge

– Implement Initialize, Compute, and Finalize methods/functions

– Instrument the simulation to call the bridge code at the right times

Oscillator miniapp overview

• MPI based C++ code that simulates a

collection of periodic, damped, or

decaying oscillators over a Cartesian

grid

• Each oscillator is convolved with a

Gaussian of a prescribed width

• Executable inputs are oscillator

parameters, time resolution, length of

the simulation, grid dimensions and grid

partitioning

Instrumenting the oscillator mini-app to use SENSEI

Most of the work is in creating VTK objects to represent simulation grid and

field data

• Create a class that derives from sensei::DataAdaptor and implements:

– virtual vtkDataObject* GetMesh(bool structure_only=false) = 0;

– virtual bool AddArray(vtkDataObject* mesh, int association, const std::string& arrayname) = 0;

– virtual unsigned int GetNumberOfArrays(int association) = 0;

– virtual std::string GetArrayName(int association, unsigned int index) = 0;

– virtual void ReleaseData() = 0;

Creating the VTK grid – GetMesh() method

vtkDataObject* DataAdaptor::GetMesh(bool vtkNotUsed(structure_only))
{
if (!this->internals->Mesh)
{
this->internals->Mesh = vtkSmartPointer<vtkMultiBlockDataSet>::New();
this->internals->Mesh->SetNumberOfBlocks(static_cast<unsigned int>(internals.CellExtents.size()));
for (size_t cc=0; cc < internals.CellExtents.size(); ++cc)
{
internals.Mesh->SetBlock(static_cast<unsigned int>(cc), this->GetBlockMesh(cc));
}

}
this->AddArray(this->internals->Mesh, vtkDataObject::FIELD_ASSOCIATION_CELLS, "data");
return this->internals->Mesh;

}

vtkDataObject* DataAdaptor::GetBlockMesh(int gid)
{
vtkSmartPointer<vtkImageData>& blockMesh = this->internals->BlockMesh[gid];
const diy::DiscreteBounds& cellExts = this->internals->CellExtents[gid];
if (!blockMesh && areBoundsValid(cellExts))
{
blockMesh = vtkSmartPointer<vtkImageData>::New();
blockMesh->SetExtent(
cellExts.min[0], cellExts.max[0]+1,
cellExts.min[1], cellExts.max[1]+1,
cellExts.min[2], cellExts.max[2]+1);

}
return blockMesh;

}

Creating the VTK cell data – AddArray() method

bool DataAdaptor::AddArray(vtkDataObject* mesh, int association, const std::string& arrayname)
{
(void)association;
bool retVal = false;
DInternals& internals = (*this->Internals);
vtkMultiBlockDataSet* md = vtkMultiBlockDataSet::SafeDownCast(mesh);
for (unsigned int cc=0, max=md->GetNumberOfBlocks(); cc < max; ++cc)
{
if (!internals.Data[cc])
{
continue;
}

vtkSmartPointer<vtkImageData>& blockMesh = internals.BlockMesh[cc];
if (vtkCellData* cd = (blockMesh? blockMesh->GetCellData(): NULL))
{
if (cd->GetArray(arrayname.c_str()) == NULL)
{
vtkFloatArray* fa = vtkFloatArray::New();
fa->SetName(arrayname.c_str());
fa->SetArray(internals.Data[cc], blockMesh->GetNumberOfCells(), 1);
cd->SetScalars(fa);
cd->SetActiveScalars("data");
fa->FastDelete();
}

retVal = true;
}

}
return retVal;

}

Implementing the bridge to SENSEI

Typically 3 calls:

• Initialize()

– For the Oscillator we store the static

Cartesian grid parameters

– Specify what analysis will be done. For

the Oscillator we use the

ConfigurableAnalysis class.

• Compute()

– For the Oscillator we do this with two

calls: set_data() and analyze(), so that

SENSEI may be disabled in benchmarks

• Finalize()

bridge

simulation

initialize

compute

finalize

Initializing the bridge

void initialize(MPI_Comm world, size_t window, size_t nblocks, size_t n_local_blocks,
int domain_shape_x, int domain_shape_y, int domain_shape_z, int* gid, int* from_x,
int* from_y, int* from_z, int* to_x, int* to_y, int* to_z,
const std::string& config_file)

{
(void)window;
GlobalDataAdaptor = vtkSmartPointer<oscillators::DataAdaptor>::New();
GlobalDataAdaptor->Initialize(nblocks);
GlobalDataAdaptor->SetDataTimeStep(-1);

for (size_t cc=0; cc < n_local_blocks; ++cc)
{
GlobalDataAdaptor->SetBlockExtent(gid[cc],

from_x[cc], to_x[cc], from_y[cc], to_y[cc],
from_z[cc], to_z[cc]);

}

int dext[6] = {0, domain_shape_x, 0, domain_shape_y, 0, domain_shape_z};
GlobalDataAdaptor->SetDataExtent(dext);

GlobalAnalysisAdaptor = vtkSmartPointer<sensei::ConfigurableAnalysis>::New();
GlobalAnalysisAdaptor->Initialize(world, config_file);

}

Executing the in situ

void set_data(int gid, float* data)
{
GlobalDataAdaptor->SetBlockData(gid, data);

}

void compute(float time)
{
GlobalDataAdaptor->SetDataTime(time);
GlobalDataAdaptor->SetDataTimeStep(GlobalDataAdaptor->GetDataTimeStep() + 1);
GlobalAnalysisAdaptor->Execute(GlobalDataAdaptor.GetPointer());
GlobalDataAdaptor->ReleaseData();

}

Finalizing the bridge

void finalize(size_t k_max, size_t nblocks)
{
(void)k_max;
(void)nblocks;
GlobalAnalysisAdaptor = NULL;
GlobalDataAdaptor = NULL;

}

Overview of autocorrelation

Autocorrelation is a statistical test of a function with itself

• Generally done in time, although can also be done over a spatial integral, or

in some cases both.

Simple definition:

• 𝐶 𝜏 =
σ𝑖=1
𝑁 𝐹 𝑖 𝐹 𝑖−𝜏

𝑁∗𝐶 ∅

Image and captions from

https://en.wikipedia.org/wiki/Autocorrelation

A plot of a series of 100 random

numbers concealing a sine

function

The sine function revealed in

a correlogram produced by

autocorrelation

Initializing the autocorrelation analysis adaptor

In order to compute autocorrelation need to provide:

• MPI communicator

• Autocorrelation

window size

• Field type and name
void Autocorrelation::Initialize(MPI_Comm world,
size_t window, int association, std::string& arrayname,
size_t kmax)

{
AInternals& internals = (*this->Internals);
internals.Master = make_unique<diy::Master>(world,
-1, -1, &AutocorrelationImpl::create,
&AutocorrelationImpl::destroy);

internals.Association = association;
internals.ArrayName = arrayname;
internals.Window = window;
internals.KMax = kmax;

}

Executing the autocorrelation analysis adaptor

Implement the Execute() method

• Use the passed in DataAdaptor object

to get the desired data (grid and field

data to compute the autocorrelation)

• Operate on grid and field information

to compute desired result

bool Autocorrelation::Execute(DataAdaptor* data)
{

AInternals& internals = (*this->Internals);
const int association = internals.Association;

vtkDataObject* mesh = data->GetMesh(/*structure-only*/ true);
if (!data->AddArray(mesh, association, internals.ArrayName))

{
return false;
}

internals.InitializeBlocks(mesh);

if (vtkCompositeDataSet* cd = vtkCompositeDataSet::SafeDownCast(mesh))
{
vtkSmartPointer<vtkCompositeDataIterator> iter;
iter.TakeReference(cd->NewIterator());
iter->SkipEmptyNodesOff();

int bid = 0;
for (iter->InitTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextItem(), ++bid)

{
if (vtkDataSet* dataObj = vtkDataSet::SafeDownCast(iter->GetCurrentDataObject()))

{
int lid = internals.Master->lid(static_cast<int>(bid));
AutocorrelationImpl* corr = internals.Master->block<AutocorrelationImpl>(lid);
vtkFloatArray* fa = vtkFloatArray::SafeDownCast(

dataObj->GetAttributesAsFieldData(association)->GetArray(internals.ArrayName.c_str()));
if (fa)

{
corr->process(fa->GetPointer(0));
}

else
{
cerr <<"Current implementation only supports float arrays" << endl;
abort();
}

}
}

}
else if (vtkDataSet* ds = vtkDataSet::SafeDownCast(mesh))

{
int bid = internals.Master->communicator().rank();
int lid = internals.Master->lid(static_cast<int>(bid));
AutocorrelationImpl* corr = internals.Master->block<AutocorrelationImpl>(lid);
vtkFloatArray* fa = vtkFloatArray::SafeDownCast(

ds->GetAttributesAsFieldData(association)->GetArray(internals.ArrayName.c_str()));
if (fa)

{
corr->process(fa->GetPointer(0));
}

else
{
cerr <<"Current implementation only supports float arrays" << endl;
abort();
}

}
return true;

}

Another example: instrumenting LAMMPS with SENSEI

• Large-scale Atomic/Molecular Massively

Parallel Simulator

• Classical molecular dynamics code

• Runs on single processors or in parallel using

message-passing techniques and a spatial-

decomposition of the simulation domain

• Accelerated performance on CPUs, GPUs,

and Intel Xeon Phis

• Distributed by Sandia National Laboratories

LAMMPS rhodopsin benchmark

(32,000 atoms).

Courtesy Malakar et al. "Optimal

scheduling of in situ analysis for

large-scale scientific simulations."

SC 2015.http://lammps.sandia.gov/

http://lammps.sandia.gov/

Enabling in situ interactive visualization for large-scale

molecular simulations

• LAMMPS is a good representative application of large scale molecular

dynamics simulations

• Use LAMMPS as a library

– Big advantage: No need to recompile or instrument LAMMPS original

code

• Drive LAMMPS from a simple application instrumented with SENSEI

• Integrate OSPRay (Intel Software-Defined visualization) as an additional

SENSEI infrastructure for interactive visualization

SENSEI architecture

bridge

data
adaptor

analysis
adaptor

simulation analysis

Architecture of LAMMPS instrumentation with SENSEI

OSPRay
LAMMPS

as library
DRIVER

LAMMPS

input file

Simple

app drives

LAMMPS

OSPRay as

another

infrastructure

Data format

• LAMMPS particle format is basically x,y,z coordinates with additional

fields like atom type or radius)

• Add LAMMPS fix/external command in input file for LAMMPS to share

pointers to its internal data after computing every timestep of the

simulation

• Additional information here: Coupling LAMMPS to other codes

http://lammps.sandia.gov/doc/Section_howto.html#howto-10

http://lammps.sandia.gov/doc/Section_howto.html#howto-10

Callback function from LAMMPS

(every timestep)

void LAMMPSCallback(void *ptr, bigint ntimestep,
int nlocal, int *id, double **x, double **f)

{
Info *info = (Info *) ptr;

// extents
double boxxlo = *((double *) lammps_extract_global(info->lmp,"boxxlo"));
double boxxhi = *((double *) lammps_extract_global(info->lmp,"boxxhi"));
double boxylo = *((double *) lammps_extract_global(info->lmp,"boxylo"));
double boxyhi = *((double *) lammps_extract_global(info->lmp,"boxyhi"));
double boxzlo = *((double *) lammps_extract_global(info->lmp,"boxzlo"));
double boxzhi = *((double *) lammps_extract_global(info->lmp,"boxzhi"));

// get pointer to atom types
int *type = (int *) lammps_extract_atom(info->lmp,"type");

// update SENSEI bridge
bridge::Set_data(nlocal, id, type, x, boxxlo, boxylo, boxzlo, boxxhi, boxyhi, boxzhi);

// visualize
bridge::Execute();

}

XYZ atom coords

from LAMMPS

get atom types

from LAMMPS

Update SENSEI

bridge
Visualize

OSPRay as an additional infrastructure

OSP

Ray

Image courtesy Will Usher, SCI, Univ. of Utah

▪ Connect to SENSEI endpoint to query data

▪ Pull data back to distributed OSPRay client app running using OSPRay’s

distributed device to provide an interactive viewer of the latest timestep

Live demo

▪ Live demo on virtual machine

– Running LAMMPS coupled to OSPRay

for interactive visualization

– Navigation: Use RIGHT click to zoom

in/out, LEFT click to rotate

▪ Steps:

In one terminal

% cd ~/sc17/demos/lammps_ospray

% ./rundriver.sh

In a second terminal

% cd ~/sc17/demos/lammps_ospray

% ./runviewer.sh

SENSEI In Situ Demonstrations with

Coupled Infrastructures

Data Extracts with VisIt/Libsim

Libsim puts VisIt in situ

• VisIt provides Libsim, a library

that simulations may use to let

VisIt connect and access their

data

• Avoids I/O and data movement

• Supports automated data

product generation

• Also supports user-driven

exploration of simulation data

VisIt
• Versatile open source software for visualizing

and analyzing petascale simulation datasets

Libsim
• Enables simulations to perform data analysis

and visualization in situ by applying VisIt

algorithms to data.
VisIt

runtime

library

Simulation

Code

Libsim

Adaptor

(C,

C++,

Fortran)

output

Libsim enables flexible workflows

• Use the VisIt GUI to connect to

your simulation and explore!

• Simulations are like any other

data source

Commands

Metadata

Geometry &

images

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Extract

data, XDB

Output

Output

• Create automated routines to

generate data in batch

• Program directly using Libsim

• Use VisIt session files

• Use Libsim to instrument simulation so it produces FieldView XDB files for later visualization in

Fieldview

• XDB is a CFD format made of surfaces and streamlines, which provides geometry and field data

that enables useful post-hoc analysis in FieldView

• Extracts are orders of magnitude smaller than volume data (avoid I/O bottleneck

• XDB’s are easily loaded into FieldView

• FieldView treats XDBs like it would the full data, except XDB’s are far faster!

• All operations available for volume-data are available for XDB data

• Numerical operations match exactly (e.g. integration)

Simulation
XDB

Files
FieldView

Libsim XDB

XDB produced in situ XDB visualizedXDB

XDB’s overcome in situ’s greatest perceived weakness
– that you need to have some idea of what you want to see in the end

• Permits interactive exploration using post-processing methods

• Cheap enough to save frequently

Flexible Extract Export

• Hard-coding plots and

extracts limits flexibility

• SENSEI XML input file

can select plots for

extract creation and for

rendering
• Provides hints to Libsim

• Specifies extracts, variables,

files to write

<!-- SENSEI ConfigurableAnalysis Configuration file.

set enabled="1" on analyses you wish to enable -->

<sensei>

<!-- Custom Analyses -->

<analysis type="histogram" array="P" association="point" bins="10" enabled="0" />

<analysis type="histogram" array="Rho" association="point" bins="10" enabled="0" />

<analysis type="histogram" array="T" association="point" bins="10" enabled="0" />

<!-- Libsim Analyses -->

<analysis type="libsim" frequency="5" operation="export“

plots="Pseudocolor" plotvars="P,Rho,T,Y_OH,Y_H2O,VORT“

filename="results/slicey%ts" slice-origin="0.02,0.02,0.02" slice-normal="0.,1.,0.“

enabled="1"/>

<analysis type="libsim" frequency="5" operation="export“

plots="Pseudocolor" plotvars="P,Rho,T,Y_OH,Y_H2O,VORT“

filename="results/slicez%ts" slice-origin="0.02,0.02,0.02" slice-normal="0.,0.,1.“

enabled="1"/>

<analysis type="libsim" frequency="5" operation="render“

plots="Pseudocolor" plotvars="VORT“

slice-origin="0.02,0.02,0.02" slice-normal="0.,0.,1." slice-project="1“

image-filename="results/slicez_T_%ts" image-width="1200" image-height="1200“

image-format="png“

enabled="1"/>
</sensei>

Adaptor Library, SENSEI/VisIt/Libsim/XDB

statically linked to AVF-LESLIE

AVF-LESLIE

Main

loop

Instrumenting AVF-LESLIE simulation

• Created adaptor library for

AVF-LESLIE

• Calls Compute function when

we want to generate extracts

via SENSEI+Libsim

• Libsim adaptor in SENSEI

directs Libsim to render or

produce extracts and which

are saved to XDB format

Adaptor Library
Initialize

Compute

Finalize

Libsim

Adaptor

Callbacks

VisIt
Runtime

libXDB

pointers

S

E

N

S

E

I

Analysis

Input File

AVF-LESLIE in situ extract generation

0

500

1000

1500

2000

8192 16384 32768

Cores

T
o

ta
l
T

im
e

 (
s
)

AVF-LESLIE Timings with In Situ Data Extraction

File I/O (2 writes) In Situ (20 extracts) Solver (100 iterations)

In Situ Time

Without I/O: 21%

With I/O: 2.4%

In Situ Time

Without I/O: 25%

With I/O: 1.9%

In Situ Time

Without I/O: 28%

With I/O: 1.6%

• Combustion code / Turbulent mixing use case

• Save vorticity isosurface every 5th iteration to FieldView

XDB format

• Write groups to partially aggregate extract I/O

For 1/30th to 1/50th the cost of full

I/O, we get 10x better temporal

sampling with extracts

Libsim information

• Information about instrumenting a simulation can be found at the

following sources:

• Getting Data Into VisIt

(https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf)

• VisIt Example Simulations

(http://visit.ilight.com/trunk/src/tools/DataManualExamples/Simulations)

• VisIt Wiki (http://www.visitusers.org)

• VisIt Email List (visit-users@email.ornl.gov)

http://www.visitusers.org/

Live demo

▪ Live demo on virtual machine

– Running AVF-LESLIE to produce extracts

– Visualization of extracts in VisIt

▪ Steps:
% cd ~/sc17/demos/visit_libsim

% ./demo.sh 0

% ./demo.sh 1

% ./demo.sh 2

% ./demo.sh 3

% ./demo.sh 4

Computational Monitoring with

ParaView Catalyst

ParaView Catalyst information

Functionality:

• Batch and interactive in situ analysis and

visualization

• In transit workflows done with standalone

ParaView, ADIOS and GLEAN

• Generate Catalyst Python scripts to drive

in situ analysis and visualization output

• Image, data extract and Cinema database

outputs

• Instrumented with Fortran, C, C++ and

Python based simulation codes

Notable achievements:

• Scaled to 1Mi MPI ranks on ALCF’s Mira

BG/Q

• SC16 visualization showcase winner

generated animation using Catalyst

• HPCWire Best HPC Visualization Product

or Technology

• 2011 (VTK), 2012, 2014 (runner-up),

2016 Editor’s Choice (ParaView)

• 2015 Reader’s Choice – tie (Paraview)

• Used on Cray, BlueGene, SGI, etc. HPC

architectures

ParaView Catalyst computational monitoring

Capabilities:

• Connect ParaView server to a running simulation

• ParaView server can be run separately (e.g. on HPC platform) or use the

GUI’s built-in server

• Data can be extracted from Catalyst instrumented simulation to ParaView

server

• Examine and change in situ analysis and visualization parameters

• Ability to disconnect and reconnect multiple times to a running simulation

• Can pause the simulation to examine results at specific points in the

simulation

from paraview.simple import *

from paraview import coprocessing

#--

Code generated from cpstate.py to create the CoProcessor.

ParaView 5.2.0 64 bits

----------------------- CoProcessor definition -----------------------

def CreateCoProcessor():

def _CreatePipeline(coprocessor, datadescription):

class Pipeline:

state file generated using paraview version 5.2.0

--

setup the data processing pipelines

--

disable automatic camera reset on 'Show'

paraview.simple._DisableFirstRenderCameraReset()

create a new 'XML Partitioned Image Data Reader'

create a producer from a simulation input

outputcart_ = coprocessor.CreateProducer(datadescription, 'input')

create a new 'Slice'

slice1 = Slice(Input=outputcart_)

slice1.SliceType = 'Plane'

slice1.SliceOffsetValues = [0.0]

init the 'Plane' selected for 'SliceType'

slice1.SliceType.Origin = [19.5, 19.5, 19.5]

slice1.SliceType.Normal = [0.0, 0.0, 1.0]

create a new 'Parallel PolyData Writer'

parallelPolyDataWriter1 = servermanager.writers.XMLPPolyDataWriter(Input=slice1)

register the writer with coprocessor

and provide it with information such as the filename to use,

how frequently to write the data, etc.

coprocessor.RegisterWriter(parallelPolyDataWriter1, filename='slice_%t.pvtp', freq=50)

create a new 'Parallel Image Data Writer'

parallelImageDataWriter1 = servermanager.writers.XMLPImageDataWriter(Input=outputcart_)

register the writer with coprocessor

and provide it with information such as the filename to use,

how frequently to write the data, etc.

coprocessor.RegisterWriter(parallelImageDataWriter1, filename='fullgrid_%t.pvti', freq=10000)

create a new 'Contour'

contour1 = Contour(Input=outputcart_)

contour1.ContourBy = ['POINTS', 'value']

contour1.ComputeScalars = 1

contour1.Isosurfaces = [0.00727323, 0.2548474225, 0.5024216149999999, 0.7499958075, 0.99757]

contour1.PointMergeMethod = 'Uniform Binning'

create a new 'Clip'

clip1 = Clip(Input=contour1)

clip1.ClipType = 'Plane'

clip1.Scalars = ['POINTS', 'value']

clip1.Value = 0.37863452872261405

clip1.InsideOut = 1

init the 'Plane' selected for 'ClipType'

clip1.ClipType.Origin = [19.5, 19.5, 19.5]

create a new 'Parallel UnstructuredGrid Writer'

parallelUnstructuredGridWriter1 = servermanager.writers.XMLPUnstructuredGridWriter(Input=clip1)

register the writer with coprocessor

and provide it with information such as the filename to use,

how frequently to write the data, etc.

coprocessor.RegisterWriter(parallelUnstructuredGridWriter1, filename='contourclip_%t.pvtu', freq=20)

--

finally, restore active source

SetActiveSource(parallelPolyDataWriter1)

--

return Pipeline()

class CoProcessor(coprocessing.CoProcessor):

def CreatePipeline(self, datadescription):

self.Pipeline = _CreatePipeline(self, datadescription)

coprocessor = CoProcessor()

these are the frequencies at which the coprocessor updates.

freqs = {'input': [20, 50, 10000]}

coprocessor.SetUpdateFrequencies(freqs)

return coprocessor

#--

Global variables that will hold the pipeline for each timestep

Creating the CoProcessor object, doesn't actually create the ParaView pipeline.

It will be automatically setup when coprocessor.UpdateProducers() is called the

first time.

coprocessor = CreateCoProcessor()

#--

Enable Live-Visualizaton with ParaView

coprocessor.EnableLiveVisualization(True, 1)

---------------------- Data Selection method ----------------------

def RequestDataDescription(datadescription):

"Callback to populate the request for current timestep"

global coprocessor

if datadescription.GetForceOutput() == True:

We are just going to request all fields and meshes from the simulation

code/adaptor.

for i in range(datadescription.GetNumberOfInputDescriptions()):

datadescription.GetInputDescription(i).AllFieldsOn()

datadescription.GetInputDescription(i).GenerateMeshOn()

return

setup requests for all inputs based on the requirements of the

pipeline.

coprocessor.LoadRequestedData(datadescription)

------------------------ Processing method ------------------------

def DoCoProcessing(datadescription):

"Callback to do co-processing for current timestep"

global coprocessor

Update the coprocessor by providing it the newly generated simulation data.

If the pipeline hasn't been setup yet, this will setup the pipeline.

coprocessor.UpdateProducers(datadescription)

Write output data, if appropriate.

coprocessor.WriteData(datadescription);

Write image capture (Last arg: rescale lookup table), if appropriate.

coprocessor.WriteImages(datadescription, rescale_lookuptable=False)

Live Visualization, if enabled.

coprocessor.DoLiveVisualization(datadescription, "localhost", 22222)

SENSEI example with Catalyst Python script

bridge

data

adaptor

analysis

adaptor
oscillator

Catalyst

Python

Script

Analysis

<sensei>

<analysis type="catalyst" pipeline="pythonscript“ filename=“catalystlive.py"/>

</sensei>

Catalyst Live through Python script

bridge

data

adaptor

analysis

adaptor
Oscillator

Catalyst

Python

Script

Analysis
ParaView

Server

Computational monitoring VM example

• module load sensei/1.1.0-catalyst

• In ~/sc17/demos/paraview_catalyst

directory:

• Run the oscillator with

“run_simulation.sh”

• Run the ParaView GUI with “paraview”

• Catalyst Menu

• Connect…

• Pause Simulation

• Continue

• Set Breakpoint

• Remove Breakpoint

Live in situ example

Only transfer requested data

from server (simulation run)

to client

• Clip1 is already getting extracted

Click on to transfer to

client from Catalyst

Use on client to stop

transferring to client

Catalyst Live GUI feedback

Three pieces of feedback

• Simulation paused

• Simulation running

• Simulation running with a

breakpoint set

ParaView Catalyst online help

ParaView User’s Guide:

– http://www.paraview.org/paraview-guide

ParaView Catalyst User’s Guide:

– http://www.paraview.org/files/catalyst/docs/ParaView

CatalystUsersGuide_v2.pdf

Email list:

– paraview@paraview.org

Websites:

– http://www.paraview.org

– http://www.paraview.org/in-situ/

– http://www.cinemascience.org/

Doxygen:

– http://www.vtk.org/doc/nightly/html/classes.html

– http://www.paraview.org/ParaView3/Doc/Nightly/html/

classes.html

Sphinx:

– http://www.paraview.org/ParaView3/Doc/Nightly/www/

py-doc/index.html

Articles & blog posts:

– http://www.kitware.com/source/home/post/170

– http://www.kitware.com/blog/home/post/606

– http://kitware.com/blog/home/post/722

– http://www.kitware.com/blog/home/post/737

– http://www.kitware.com/blog/home/post/752

– http://www.kitware.com/blog/home/post/733

– http://www.kitware.com/blog/home/post/709

http://www.paraview.org/paraview-guide
http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
mailto:paraview@paraview.org
http://www.paraview.org/
http://www.paraview.org/in-situ/
http://www.cinemascience.org/
http://www.paraview.org/ParaView3/Doc/Nightly/html/classes.html
http://www.paraview.org/ParaView3/Doc/Nightly/html/classes.html
http://www.paraview.org/ParaView3/Doc/Nightly/www/py-doc/index.html
http://www.kitware.com/source/home/post/170
http://www.kitware.com/blog/home/post/606
http://kitware.com/blog/home/post/722
http://www.kitware.com/blog/home/post/737
http://www.kitware.com/blog/home/post/752
http://www.kitware.com/blog/home/post/733
http://www.kitware.com/blog/home/post/709

Autocorrelation with ADIOS

What is ADIOS

An extendable framework that allows developers to plug-in

• I/O methods: N-to-M, N-to-N, N-to-1, In Situ (aka Staging)

• Transformations: Compression, Decompression, Indexing

• Self describing data format: ADIOS-BP

• Indexing/Querying: MinMax, FastBit, Alacrity

Incorporates the “best” practices in the I/O middleware layer

Released twice a year, now 1.12, under the completely free BSD license

• https://www.olcf.ornl.gov/center-projects/adios

• https://github.com/ornladios/ADIOS

Available at ALCF, OLCF, NERSC, CSCS, Tianhe-1,2, Pawsey SC, Ostrava

Applications are supported through OLCF INCITE program

Outreach via on-line manuals, and live tutorials

How to use ADIOS
ADIOS is provided as a library to users; use it like other I/O libraries, except

ADIOS has a simple approach for I/O

• User defines in application source code: “what” and “when”

– Every process defines what data and when to output

• ADIOS takes care of the “how”

Biggest hurdle for users:

• Forget all of your manual tricks to gain I/O performance on your particular target
system and target scale and just say what you want to write/read

• Trust ADIOS to deliver the performance

Performance Portability:

• Write once, perform well anywhere

– It comes naturally with ADIOS

– ADIOS has many different I/O methods (strategies)

Data management tradeoffs at exascale  to hybrid staging

Balance of memory size and speed

Feedback for node designs with NVRAM, larger

memory, on-chip NIC

Network throughput and latency impact on SDMA tasks

Placement of operations in concert with solver and

network topology

Explore node layout choices for data management

Goals of the ADIOS Read API design

Staging I/O

• Insulate the scalable application from the variability inherent in the file system

• Enable the utilization of in situ and in transit analytics and visualization

Same API for reading data from files and from staging

Writeblock

nxn
y

(0,0)

Auto

Allow for read optimizations:

• Multiple read operations can be

scheduled before performing them

• Allow for blocking and non-blocking

reads

• Use generic selections in the read

statements instead of describing a

bounding box

• Option to let ADIOS deliver data in

chunks, with memory allocated inside

ADIOS not in user-space

Selections
ADIOS_SELECTION *

adios_selection_boundingbox (int ndim, uint64_t * offsets, uint64_t * readsize)

adios_selection_points (uint64_t ndim, uint64_t npoints, uint64_t *points)

adios_selection_writeblock (int index)

adios_selection_auto (char * hints)

Writeblock

nx

n
y

(0,0)

Auto

Example of Read API: read a variable step-by-step

int count[] = {10,10,10};

int offs[] = {5,5,5};

P = (double*) malloc (sizeof(double) * count[0] * count[1] * count[2]);

Q = (double*) malloc (sizeof(double) * count[0] * count[1] * count[2]);

ADIOS_SELECTION *sel = adios_select_boundingbox (3, offs, count);

while (fp != NULL) {

adios_schedule_read (fp, sel, "P", 0, 1, P);

adios_schedule_read (fp, sel, “Q", 0, 1, Q);

adios_perform_reads (fp, 1, NULL); // 1: blocking read

// P and Q contains the data at this point

adios_release_step (fp); // staging method can release this step

// ... process P and Q, then advance the step

adios_advance_step (fp, 0, 60.0);

// 60 sec blocking wait for the next available step

}

// free ADIOS resources

adios_free_selection (sel);

N to M reorganization with stage_write

heat transfer + stage_write running together

• Write out 6 time-steps.

• Write from 12 cores, arranged in a 4 x 3 arrangement.

• Read from 3 cores, arranged as 1x3

y

x

N to M reorganization with stage_write

$ cd ~/Tutorial/heat_transfer

edit heat_transfer.xml (vi, gedit)

set method to MPI

﻿<method group="heat" method="MPI"/>

$ mpirun -np 12 ./heat_transfer_adios1 heat 4 3 40 50 6 500

$ bpls -D heat.bp T
double T 6*{150, 160}

step 0:

block 0: [0: 49, 0: 39]

block 1: [0: 49, 40: 79]

...

block 11: [100:149, 120:159]

$ mpirun -np 3 stage_write/stage_write heat.bp h_3.bp BP "" FLEXPATH "" 3
$ bpls -D h_3.bp T
double T 6*{150, 160}

step 0:

block 0: [0:149, 0: 52]

block 1: [0:149, 53:105]

block 2: [0:149, 106:159]

Live demo

▪ Live demo on virtual machine

SENSEI + Python

SENSEI is a powerful tool to connect simulations to

visualization and analysis tools for in situ use. Here we show

how to leverage this from a Python based simulation.

SENSEI's Python bindings

• SENSEI based on VTK but we use SWIG (Simple Wrapper Interface

Generator) to generate Python bindings.

• VTK's Python wrapper generator, doesn’t wrap many methods due to types

it doesn’t understand. Too purpose specific and inflexible.

• SWIG has extensive C++ compatibility and can be taught to play nice with

VTK’s wrapper generator

• Interface (.i) files control what gets wrapped. We wrap everything in

SENSEI.

• Bound classes and API in Python have same names as in C++. Code looks

and feels very C++ like.

Footer 89

For developers, extending or adding on to SENSEI

vtk.i : A SWIG interface file defining 2 macros:

1. VTK_SWIG_INTEROP(vtk_t)

• defines typemaps for using VTK wrapped VTK classes in SWIG generated

API (tells SWIG how to play nice with VTK)

2. VTK_DERIVED(derived_t)

• enable SWIG memory management for wrapped classes derived from VTK

classes (VTK has unique reference counting implementation)

Pass a VTK class to SENSEI

Pass a SENSEI class to VTK

Footer 90

Integrating SENSEI in a simulation written in Python

1. Compile VTK with Python enabled. often a part of your chosen back-end.

eg Catalyst, Libsim.

2. Compile SENSEI with Python features enabled

3. Select analysis and data adaptors. Use existing or write your own in C++

and wrap them. sensei::VTKDataAdaptor is a good choice.

4. Instrument your simulation, and bridge code. sets up the data adaptor and

invoke analysis periodically.

5. Create any analysis specific run time configurations needed, eg. SENSEI

XML files, Catalyst Python scripts, VisIt session files, etc..

Footer 91

Newton mini-app

N-body Gravitational Simulation. A

single file, <400 lines.

Solves Newton's law of gravitation

Velocity Verlet method

Fi = Fj = G*mi*mj/rij**2

xi' = vi

vi' = Fi/mi

Footer 92

m1

F1

v2

x1

m2F2

v1

x2

r12

Newton mini-app

Footer 93

– direct solver, O(N**2)

– Velocity Verlet

» second order, symplectic, conserves

momentum exactly, time reversible

– the simplest possible code

– a single file, <400 lines, to better focus on

use of SENSEI interface

– a production quality code could easily be

thousands of lines (see NBODY6 ~6K

lines)

Instrumenting the simulation

if __name__ == '__main__':
parse the command line
…

set up the initial condition
n_bodies = args.n_bodies*n_ranks
ic = uniform_random_ic(n_bodies, -5906.4e9, \

5906.4e9, -5906.4e9, 5906.4e9, 10.0e24, \
100.0e24, 1.0e3, 10.0e3)

ids,x,y,z,m,vx,vy,vz,fx,fy,fz = ic.allocate()
h = args.dt if args.dt else ic.get_time_step()

run the sim and analysis
i = 1
while i <= args.n_its:

velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
i += 1

Footer 94

Instrumenting the simulation

set up the initial condition
n_bodies = args.n_bodies*n_ranks
ic = uniform_random_ic(n_bodies, -5906.4e9, \

5906.4e9, -5906.4e9, 5906.4e9, 10.0e24, \
100.0e24, 1.0e3, 10.0e3)

ids,x,y,z,m,vx,vy,vz,fx,fy,fz = ic.allocate()
h = args.dt if args.dt else ic.get_time_step()

create an analysis adaptor(bridge code)
adaptor = analysis_adaptor()
adaptor.initialize(args.analysis, args.analysis_opts)

run the sim and analysis
adaptor.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
i = 1
while i <= args.n_its:

velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
adaptor.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
i += 1

finish up
adaptor.finalize()

Footer 95

Interface to SENSEI (aka the bridge)

class analysis_adaptor:
def __init__(self):

self.DataAdaptor = sensei.VTKDataAdaptor.New()
self.AnalysisAdaptor = None

def initialize(self, analysis, args=''):
select and configure SENSEI analysis adaptor
…

def finalize(self):
if self.Analysis == 'posthoc':

self.AnalysisAdaptor.Finalize()

def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
convert simulation data to VTK
invoke the analysis
…

– Our analysis adaptor bridge selects and

configures and drives one of a number of

SENSEI analysis adaptors

– Manages an instance of

sensei::VTKDataAdaptor to which we will

create and pass VTK objects to

Footer 96

Initializing the in situ analysis

def initialize(self, analysis, args=''):
self.Analysis = analysis
args = csv_str_to_dict(args)
Libsim
if analysis == 'libsim':

self.AnalysisAdaptor = sensei.LibsimAnalysisAdaptor.New()
self.AnalysisAdaptor.AddPlots('Pseudocolor','ids', False,False, \

(0.,0.,0.),(1.,1.,1.),sensei.LibsimImageProperties())
Catalyst
elif analysis == 'catalyst':

if check_arg(args,'script'):
self.AnalysisAdaptor = sensei.CatalystAnalysisAdaptor.New()
self.AnalysisAdaptor.AddPythonScriptPipeline(args['script'])

VTK I/O
elif analysis == 'posthoc':

if check_arg(args,'file','newton') and check_arg(args,'dir','./') \
and check_arg(args,'mode','0') and check_arg(args,'freq','1'):
self.AnalysisAdaptor = sensei.VTKPosthocIO.New()
self.AnalysisAdaptor.Initialize(comm, args['dir'],args['file'], \

[],['ids','fx','fy','fz','f','vx','vy','vz','v','m'], \
int(args['mode']),int(args['freq']))

Configurable
elif analysis == 'configurable':

if check_arg(args,'config'):
self.AnalysisAdaptor = sensei.ConfigurableAnalysis.New()
self.AnalysisAdaptor.Initialize(comm, args['config'])

if self.AnalysisAdaptor is None:
status('ERROR: Failed to initialize "%s"\n'%(analysis))
sys.exit(-1)

Select and configure one of the existing

SENSEI analysis adaptors from command

line arguments

• We are using Libsim, Catalyst, and

VTKPosthocIO SENSEI analysis classes

directly through the bindings

• SENSEI's Configurable analysis class

also exposes these and more and is

configurable via an XML file. Eg ADIOS

Footer 97

Invoking in situ back analysis

def update(self, i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):

status('% 5d\n'%(i)) if i > 0 and i % 70 == 0 else None
status('.')

construct VTK a dataset
node = points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
mb = vtk.vtkMultiBlockDataSet()
mb.SetNumberOfBlocks(n_ranks)
mb.SetBlock(rank, node)

pass it to the data adaptor
self.DataAdaptor.SetDataTime(t)
self.DataAdaptor.SetDataTimeStep(i)
self.DataAdaptor.SetDataObject(mb)

execute the in situ analysis
self.AnalysisAdaptor.Execute(self.DataAdaptor)

free up memory
self.DataAdaptor.ReleaseData()

1. create and pass Multi-block (tree

based) dataset to SENSEI data

adaptor

– each rank is responsible for a leaf in

the tree

2. pass time and step number to data

adaptor

3. invoke the SENSEI analysis adaptor

4. release memory held in the adaptor

Footer 98

Create the VTK dataset

def points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz):
nx = len(x)
convert simulation to VTK data structures
v_pts = to_vtk_points(nx,x,y,z)
v_cells = to_vtk_cells(nx)
v_ids = to_vtk_scalars(nx,'ids',ids)
v_m = to_vtk_scalars(nx,'m',m)
v_v,v_mv = to_vtk_vector(nx,'v',vx,vy,vz)
v_f,v_mf = to_vtk_vector(nx,'f',fx,fy,fz)
package it all up in a poly data set
pd = vtk.vtkPolyData()
pd.SetPoints(pts)
pd.GetPointData().AddArray(v_ids)
pd.GetPointData().AddArray(v_m)
pd.GetPointData().AddArray(v_v)
pd.GetPointData().AddArray(v_mv)
pd.GetPointData().AddArray(v_f)
pd.GetPointData().AddArray(v_mf)
pd.SetVerts(cells)
return pd

Strategy

1. create VTK arrays

2. pass them to a VTK dataset

Who owns what?

– VTK uses reference counting. Python

does too. Unfortunately they don't talk to

each other without some extra code.

– Tell VTK to make a deep copy if the array

goes out of scope

Footer 99

Dataset geometry

def to_vtk_points(nx,x,y,z):
xyz = np.empty(3*nx, dtype=np.float32)
xyz[::3] = x[:]
xyz[1::3] = y[:]
xyz[2::3] = z[:]
vxyz = vtknp.numpy_to_vtk(xyz, deep=1)
vxyz.SetNumberOfComponents(3)
vxyz.SetNumberOfTuples(nx)
pts = vtk.vtkPoints()
pts.SetData(vxyz)
return pts

def to_vtk_cells(nx):
cids = np.empty(2*nx, dtype=np.int32)
cids[::2] = 1
cids[1::2] = np.arange(0,nx,dtype=np.int32)
cells = vtk.vtkCellArray()
cells.SetCells(nx, vtknp.numpy_to_vtk(cids, \

deep=1, array_type=vtk.VTK_ID_TYPE))
return cells

Strategy

1. create an empty array

2. interleave x,y,z components or cell length

and point ids

3. pass new array to VTK data structure

TODO – test new zero copy stuff from DG

Footer 100

Array based data

def to_vtk_scalars(nx,name,s):
scalar = vtknp.numpy_to_vtk(s, deep=1)
scalar.SetName(name)
return scalar

def to_vtk_vector(nx,name,vx,vy,vz):
vector in interleaved layout
vxyz = np.zeros(3*nx, dtype=np.float32)
vxyz[::3] = vx
vxyz[1::3] = vy
vxyz[2::3] = vz
vector = vtknp.numpy_to_vtk(vxyz, deep=1)
vector.SetName('v')
magnitude
mv = np.sqrt(vx**2 + vy**2 + vz**2)
mag = vtknp.numpy_to_vtk(mv, deep=1)
mag.SetName('mag%s'%(name))
return vector,mag

Scalars

1. pass new array to VTK data structure

Vectors/Tensors

1. create an empty array

2. interleave components

3. pass new array to VTK data structure

TODO – test new zero copy stuff from DG

Footer 101

Side bar: run time configuration

Adaptors

• SENSEI Configurable analysis. Parses XML and creates and configures one of the

other analysis adaptors interfacing to the back-ends (Libsim, Catalyst, ADIOS,

custom, etc).

Back-ends

• May expose control API via their SENSEI adaptor. In the Configurable analysis

adaptor these are exposed via XML attributes.

• May be scriptable via their own Python bindings adding another layer of control.

• May be configured via "state" or "session" files.

Some adaptors or back-ends may be hard wired to do one thing

Footer 102

bridge code

VTK data

adaptor

newton

mini-app

Configurable

analysis

adaptor

ADIOS

analysis

adaptor

bridge code

Configurable

analysis

adaptor

Catalyst

analysis

adaptor

Libsim

analysis

adaptor

Histogram

analysis

adaptor

ADIOS end-

point

ADIOS data

adaptor

In transit demos

Footer 103

XML selects
one of these

FLEXPATH
transport moves
data across network

Simulation runs in 1st job

End-point runs in 2nd job

SENSEI in transit configurations

Simulation (this config used with all end-point configs below)
<sensei>
<analysis type="adios" filename="newton.bp" method="FLEXPATH" enabled="1" />
<analysis type="adios" filename="newton.bp" method="DATASPACES" enabled="0" />
<analysis type="adios" filename="newton.bp" method="MPI" enabled="0" />

</sensei>

End-point with Catalyst
<sensei>

<analysis type="catalyst" pipeline="pythonscript" filename="catalyst_config.py" enabled="1" />
</sensei>

End-point with Libsim
<sensei>
<analysis type="libsim" plots="Pseudocolor" plotvars="ids" image-filename="image_%ts"
image-width="800" image-height="800" slice-project="1" image-format="png" frequency="1" enabled="1"/>

</sensei>

End-point with Histogram
<sensei>
<analysis type="histogram" array="magv" association="point" bins="20" enabled="1" />
<analysis type="histogram" array="magf" association="point" bins="10" enabled="0" />

</sensei>

Footer 104

Running the in transit demo

Job 1: Simulation
launch simulation, run 100 iterations
$./newton_in_transit.sh 100

Job 2: End-point with Catalyst
launch end-point configured with Catalyst. Renders and writes images
$./catalyst_in_transit.sh

Job 2: End-point with Libsim
launch end-point configured with Libsim. Renders and writes images
$./libsim_in_transit.sh

Job 2: End-point with Histogram
launch end-point configured with histogram. Computes histograms
$./histogram_in_transit.sh

Footer 105

In Situ Costs and Performance

Measuring the cost of in situ

Two questions:

How much overhead associated with use of in situ methods,

infrastructure (runtime, memory)?

Does this change with varying concurrency?

Additionally:

In situ and in transit configurations

In situ and post hoc: end-to-end comparison

U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E. Jansen, B. Loring,

Z. Lukic, S. Menon, D. Morozov, P. O’Leary, R. Ranjan, M. Rasquin, C. P. Stone, V. Vishwanath,

G. H. Weber, B. Whitlock, M. Wolf, K. Wu, and E. W. Bethel. Performance Analysis, Design

Considerations, and Applications of Extreme-scale In Situ Infrastructures. In Proceedings of

SC16, November 2016.

Methodology for measuring cost of in situ

Miniapplication: data source (next slide)

In situ methods

– Histogram computation

– Autocorrelation computation (temporal analysis)

– Extract and render a 2D slice from a 3D volume

In situ infrastructures

– VisIt/Libsim

– ParaView/Catalyst

– ADIOS

Measure:

• Runtime and memory footprint

• At varying levels of concurrency

• One-time and recurring

Test Platform
Cori Phase I at NERSC

Cray XC system

1630 compute nodes

Dual 2.3Ghz 16-core Intel

Haswell processors

128GB RAM/node

Concurrency levels of

tests:

812 (~1K)

6496 (~6K)

45440 (~45K)

Miniapplication - oscillators

Bulk-synchronous parallel computation

of periodic, damped oscillators (MPI-

based app)

No interprocess communication -

entirely analytic, embarassingly

parallel

For m oscillators and per-rank grid size

of N3:

• Per-rank memory footprint: 2N3

• Per-rank complexity: mN3

Miniapp configurations – in situ methods

Configuration Intention

Original Miniapp with no SENSEI interface, no I/O.

Direct-coupling (subroutine call) to analysis methods

Measure runtime/memory with no in situ

Baseline Miniapp with the SENSEI interface enabled

No analysis or I/O

Measure overhead of in situ interface in isolation

Histogram Miniapp+SENSEI interface+histogram computation

No in situ infrastructures

Compare performance to Original, Baseline

Autocorrelation Miniapp+SENSEI interface+autocorrelation computation

No in situ infrastructures

Compare performance to Original, Baseline

Miniapp configurations – with in situ infrastructures

Configuration Intention

Catalyst-slice Miniapp + SENSEI interface + Catalyst

Catalyst performs a 2D slice extraction of 3D volume

Followed by parallel rendering, produces an image

Compare to Original, Baseline

Libsim-slice Miniapp + SENSEI interface + Libsim

Libsim performs a 2D slice extraction of 3D volume

Followed by parallel rendering, produces an image

Compare to Original, Baseline

ADIOS-FlexPath Miniapp + SENSEI interface + ADIOS/FlexPath

In transit implementation of histogram, autocorrelation,

Catalyst-slice

Compare to Original, Baseline

Measuring impact of SENSEI interface

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K

• Original: miniapp + subroutine called autocorrelation

• Baseline: miniapp + SENSEI bridge to autocorrelation

Compare runtime (left), memory footprint (right)

No significant difference reflects zero-copy nature of the interface

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
ri
gi
n
al
	

SE
N
SE
I	

A
u
to
co
rr
e
la
;
o
n
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation

M
a
x	
V
m
H
W
M
	in
	M

B
s

Comparing in situ to post hoc

Post hoc configuration

• Simulation computes something

• Then writes results to disk

• Post hoc method reads from disk

and performs analysis

In Situ configuration
• Simulation computes

something

• Then in situ method
computes something

• (No disk I/O involved)

Post hoc study concurrency

Simulation Postprocess

812 82

6496 650

45440 4545

Weak-scaling Study
• Measure post hoc end-to-end cost

• Sim writes, post hoc reads,
processing

• Compare to in situ configurations
• Also measure time-to-solution for

100 timesteps

Post hoc: cost of writes

Baseline miniapp with the addition of
parallel I/O

• VTK I/O, non-collective

• MPI-IO collective is slower (see
the paper)

• This is not an I/O study. ☺ We
used the fastest I/O approach we
could get our hands on.

Weak-scaling: linear increase with
problem size

I/O cost is significant at high
concurrency

Cost of Writes
Concurrency 1 step Aggregate

812 2 GB, 0.12s 0.2 TB, 12s

6496 16 GB, 0.67s 1.6 TB, 67s

45440 123 GB. 9.05s 12.3 TB, 905s

Post hoc: cost of reads + processing

0 500 1000 1500 2000 2500

82

650

4545

82*

650*

4545*

82

650

4545
h
is
to
gr
am

au
to
	

co
rr
el
at
io
n

p
ar
av
ie
w
-

sl
ic
e

read process write

Time required for reads, processing, and writing (results) for

post hoc methods at varying level of concurrency.

In situ: time-to-solution

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

B
as
e
lin
e	

H
is
to
gr
am

	
A
u
to
	

co
rr
el
a:

o
n
	
C
at
al
ys
t-
	

Sl
ic
e	

Li
b
si
m
-	

Sl
ic
e	

simula: on	 analysis	

Post hoc vs. in situ time to solution

Post hoc fixed costs (at 45K): about 1200s and 12.3 TB

disk space

Fewer ranks for analysis processing results in longer

analysis runtime (in this 1:10 configuration, which is

typical for post hoc use cases)

Configuration (45K) In Situ Post hoc: sim + write + read + process

Histogram ~40s ~1230s = ~25s + ~905s + ~300s + (a few secs)

Autocorrelation ~225s ~2930s = ~25s + ~905s + ~300s + ~1700s

Catalyst-slice ~80s ~1505s = ~25s + ~905s + ~300s + ~275s

In Situ at Scale on Real Science Problems:

Computational Fluid Dynamics

PHASTA from UC Boulder run on Mira@ANL

• Simulation of realistic geometry tail rudders and active flow
control

• Coupled via SENSEI interface to Catalyst-slice, producing an
output image

– Field data, nodal coordinates: zero copy

– Connectivity data: full copy

• Runs with 256K and 1M MPI ranks

– 1M run was 4 times larger than any known in situ analysis run

– Key technologies include reduced library size, simplified output
specification and static linking using IBM XL compilers for
fastest run times

– In situ overhead: 8.2%, 33%, 13%
• The 33% traced to zlib/PNG compression on rank 0

Three key performance analysis focus areas

One-time costs: initialization
• Some in situ setups may entail non-zero

initialization costs, e.g.:
• Per-rank config file processing

One-time costs: finalization

• Some in situ setups may entail
non-trivial initialization costs,
e.g.:

• Global reductions

• Gives insights into ways to
optimize

Recurring costs
• Execution time:

• Different methods require differing
amounts of computation

• Algorithmic complexity at scale

• In situ methods that use reductions

• In situ vs. in transit tradeoffs

• Memory consumption
• Temporal analysis methods must

buffer more data

What is the cost of in situ processing?

Concern: simulations want to use all available resources, so having an

understanding of in situ resource utilization is useful.

In other words: In situ infrastructure must play nicely with simulation

Full details in SC16 paper: Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque,

Greg Eisenhauer, Nicola Ferrier, Junmin Gu, Kenneth E. Jansen, Burlen

Loring, Zarija Lukic, Suresh Menon, Dmitriy Morozov, Patrick O’Leary,

Rateesh Ranjan, Michel Rasquin, Christopher P. Stone, Venkat Vishwanath,

Gunther H. Weber, Brad Whitlock, Matthew Wolf, K. John Wu, and E. Wes

Bethel, Performance Analysis, Design Considerations, and Applications of

Extreme-scale In Situ Infrastructures. In Proceedings of SC16, November

2016.

Shared resources

• Initialization costs need to be monitored

– Static build options important as HPC simulation size increases

– Initialization costs do get amortized

• Finalization costs can be a factor for certain in situ algorithms

• Memory costs can be a factor

– Shared memory usage for simulation and in situ arrays (“zero copy”)

– Request only needed arrays through the DataAdaptor’s AddArray() method

– Some analysis algorithms can require a lot of memory

– Autocorrelation could potentially need to store full data at each time step. Use

autocorrelation window size to reduce the amount of time steps stored

In situ compute

• In situ computation may not need to be done every time step

– Lower fidelity time stepping output

– Only when something “interesting” is happening

• Can still reduce output size

– Image output is fixed size and independent of simulation size

– Coarsen data extracts

– Compute summary statistics (e.g. autocorrelation, histogram)

Measuring impact of SENSEI interface

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K

• Original: miniapp + subroutine called autocorrelation

• Baseline: miniapp + SENSEI bridge to autocorrelation

Compare runtime (left), memory footprint (right)

No significant difference reflects zero-copy nature of the interface

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
ri
gi
n
al
	

SE
N
SE
I	

A
u
to
co
rr
e
la
;
o
n
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation

M
a
x	
V
m
H
W
M
	in
	M

B
s

Comparing in situ to post hoc

Post hoc configuration

• Simulation computes something

• Then writes results to disk

• Post hoc method reads from disk

and performs analysis

In Situ configuration
• Simulation computes

something

• Then in situ method computes
something

• (No disk I/O involved)

Post hoc study concurrency

Simulation Postprocess

812 82

6496 650

45440 4545

Weak-scaling Study
• Measure post hoc end-to-end cost

• Sim writes, post hoc reads,
processing

• Compare to in situ configurations
• Also measure time-to-solution for

100 timesteps

Wrapping Up

SC17 In Situ Tutorial Summary

• Why should you care about in situ?

• Flops >> I/O; in situ is a viable approach for coping with

this problem

• What in situ infrastructures are available?

• What about interfacing my sim code to them?

• What are the performance issues to be thinking about?

Links

• Main page – http://www.sensei-insitu.org/

• Software repo – https://gitlab.kitware.com/sensei/sensei

• ADIOS – https://www.olcf.ornl.gov/center-projects/adios/

• VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim

• ParaView Catalyst – http://www.paraview.org/in-situ/

Tutorial evaluation

• Was this tutorial useful to you?

• Were there any subjects you’d like to see covered?

• More of some?

• Less of others?

• Please provide SC17 with tutorial feedback

• https://submissions.supercomputing.org/eval.html

• Also, can provide feedback to us at:

• Andy Bauer: andy.bauer@kitware.com

• Wes Bethel: ewbethel@lbl.gov

mailto:andy.bauer@kitware.com
mailto:ewbethel@lbl.gov

Conclusions and future work

Write once, use everywhere

Easy to add new analysis/frameworks

Understanding data transformation costs

Data Model: supporting arbitrary layouts for connectivity

Bigger runs – current best is 1Mi MPI processes on Mira@ALCF

More examples, tutorials, improved docs, etc.

This work is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy, Office

of Advanced Scientific Computing Research, under Contract No. DE-AC02-05CH11231, through the grant “Scalable Analysis Methods and In

Situ Infrastructure for Extreme Scale Knowledge Discovery,” program managers Dr. Lucy Nowell and Dr. Laura Biven.

SENSEI: Scalable Analysis Methods

and In Situ Infrastructure for Extreme

Scale Knowledge Discovery

Acknowledgment

This work is supported by the Director, Office of Science, Office of Advanced Scientific

Computing Research, of the U.S. Department of Energy, Office of Advanced Scientific

Computing Research, under Contract No. DE-AC02-05CH11231, through the grant

“Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale

Knowledge Discovery,” program managers Dr. Lucy Nowell and Dr. Laura Biven.

SENSEI: Scalable Analysis Methods

and In Situ Infrastructure for Extreme

Scale Knowledge Discovery

