
In Situ Analysis and Visualization 

with SENSEI

13 November 2017

Supercomputing 2017



Welcome! Why are we here?

Problem: FLOPS >> I/O, potential for 

lost science

Approach: do as much processing as 

possible while data still resident in 

memory?

Why This Tutorial? To inform you of 

issues involved, to show you what 

technologies are available and how to 

use them.



Outline

Å Introduction to In Situ Analysis and Visualization

Å SENSEI In Situ Data Interface

Å Instrumenting data sources and endpoints (C++)

Å SENSEI In Situ Demonstrations with Coupled Infrastructures

ðData extracts with Libsim

ðComputational monitoring with ParaView Catalyst 

ðAutocorrelation with ADIOS

ðUsing SENSEI via Python

Å In Situ Costs and Performance

ÅClosing thoughts



What are the problems?

Not enough I/O capacity on current HPC systems, and 

the trend is getting worse.

If thereôs not enough I/O, you canôt write data to 

storage, so you canôt analyze it: lost science.

Energy consumption: it costs a lot of power to write 

data to disk.

Opportunity for doing better science (analysis) when 

have access to full spatiotemporal resolution data.



Five orders of magnitude between compute and I/O 

capacity on Titan Cray system at ORNL

Computation

125 PB/s

Node memory

4.5 PB/s
Node memory

4.5 PB/s

Interconnect

24 TB/s

Storage

1.4 TB/s

Interconnect

24 TB/s

O(2)

O(2)

O(1)

Image courtesy Ken Moreland



The problem is not going away

Data courtesy A. Geist (ORNL)



What is in situ data analysis and visualization?

Two use models:

ÅPost processing (post hoc): save to disk, then later, a separate 

analysis/vis program reads that data and operates on it.

ÅIn situ processing: process data as it produced without writing to 

and reading from storage. Processed ñin placeò. 
ðMany flavors/terms: tightly coupled, loosely coupled, in transit, co-processing, etc. 

ðPractical view: anything processed but not written to persistent storage is in situ

Simulation Cores

In Situ/In Transit Cores

In situ ïno data 

movement:

Simulation and in 

situ methods 

share memory

In transit ïdata 

is moved: 

Simulation and 

in situ methods 

do not share 

memory



The story is much more interesting than ñin situò vs. 

ñin transitò

In situ vs. in transit is an 

oversimplification of a much richer 

problem space

The ñIn Situ Terminology Projectò

ÅA community effort (>50 

participants)

ÅIdentify ñbasis vectorsò for describing 

aspects of in situ processing

ðIntegration Type, Proximity, 

Access, Division of Execution, 

Operation Controls, Output Type



Co-processingIn Transit

In Situ

In Situ

In situ:an òumbrella definitionò

In situ is term that covers a lot of 

territory:

In Situ Terminology project:

http://ix.cs.uoregon.edu/~hank/insituterminology/

Community effort to identify basis vectors and name them.

http://ix.cs.uoregon.edu/~hank/insituterminology/


In situ has been around a long time: ancient history

E. Zajac, CACM 7(3), Mar 1964.

Direct-to-film process (simulation, calligraphic 

display exposes film) movie of a satellite 

orbiting a planet.

Is this in situ?

ÅYes: no data ever landed on disk.

Why did he do it?

ÅñStandard practiceò for that era, and many 

years that followed: direct-to-media more 

efficient.

Link to movie page

http://www.historyofinformation.com/expanded.php?id=1002


The 1990s: the golden era of coprocessing

Main idea: systems/methods that support 

interactive computation, computational 

monitoring and steering.

Packages from this era (partial list):

ÅpV3: custom distributed memory code 

(Haimes)

ÅAVS: co-routine processing (serial, mostly)

ÅCUMULVS: distributed memory M-to-N 

visualization, steering (based on PVM) 

(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling 

a multi-phase reservoir simulator with AVS.



Common design patterns of 1990s

Rank 0 Rank Né

Client

GUI

Many-to-one: AVS

Rank 0 Rank Né

GUI

Rank 0 Rank N

Client

ñTightly coupledò: pV3, 

custom projects

Rank 0 Rank Né

GUI

Rank 0 Rank M

Client

ñLoosely coupledò, M-to-

N: CUMULVS

é



Computational steering ïhuman in the loop

Main idea: rapid convergence

Example: protein structure prediction, find 

optimal-energy conformation from initial 

conditions (NP-hard problem)

Approach: 

Åparallel computations that minimize 

energy for individual conformations

ÅUser can examine any of these, perform 

manual tweaks to get ñunstuckò from 

local minimum, then resume 

calculations.
O. Kreylos, N. Max, B. Hamann, S. 

Crivelli, W. Bethel. Interactive Protein 

Manipulation. IEEE Vis 2003, Best 

Application Paper award.



Integrated computational environments

ÅSimplify building, running 

codes

ÅMany add-on capabilities for 

vis, analysis, debugging, 

data I/O, etc.

Examples: SCIRun, Cactus

Application (sample): parallel 

binary black hole merger 

computation, in transit vis 

wins SC Bandwidth 

Challenge (2000, 2001, 

2002)
14

Resources used in SC 2002 Bandwidth 

Challenge, in transit workflow



Explorable extracts

Basic ideas:

ÅOvercome in situ primary weakness: know 

before you go.

ÅUse in situ computation to produce reduced-

size datasets, e.g., images, data subsets, 

ñextractsò like collections of features, etc.

ÅThese ñdata extractsò are much smaller in size 

compared to doing full resolution data I/O.

ÅUse some post-processing tool to 

view/analyze/interact with these extracts.

Climate modeling example using Catalyst and 

Cinema in our STAR paper. 

Chen et al., Interactive, Internet Delivery of Visualization 

via Structured, Prerendered Multiresolution Imagery.

TVCG 14(2), 2008.

Bauer, et al., In Situ Methods, Infrastructures, and Applications on HPC Platforms, 

a State-of-the-Art (STAR) Report, Computer Graphics Forum, 35(3), 2016.



In situ projects over the years (approximate, partial)

1964: Zajac, direct-to-film animations

1990s: Code coupling, computational 

steering:

AVS

pV3

CUMULVS

2000s (early): Integrated Computational 

Environments:

SCIRun

CACTUS

2000s (late): Computing Extracts for Post 

Hoc Use

Multiresolution, precomputed images

Topology

Geometry

Present day:

VisIt/Libsim, Paraview/Catalyst: scalable 

vis infrastructure accessible in situ

ADIOS: I/O library approach

SENSEI: generic in situ interface

Other nascent efforts



Roadmap of In Situ Software Infrastructure for Today

SENSEI Generic In Situ Interface

Miniapps from

SENSEI software 

collection, C++ and Python

Sim codes:

LAMMPS, AVF-LESLIE

ADIOS
ParaView/

Catalyst

VisIt/

Libsim

Other 

endpoints or 

methods: 

OSPray, etc. 



Generic processing sequence (sim code view)

Initialize

Hereôs some data, 

do something with it

Finalize

Hereôs where things get interesting.

This could be an entry point into some significant 

processing, like a complex distributed workflow.



Tutorial VM & web-site

ÅUSB drive available which contains:

Å All demos shown here

Å A pdf of the slides for reference

Å Includes hidden slides with more details not covered here due to time 

restrictions

Å www.sensei-insitu.org/tutorials web-site also has this information

http://www.sensei-insitu.org/tutorials


SENSEI In Situ Data Interface




