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Tutorial VM & web-site

The latest slides and VM can be obtained from after 5pm on Friday Nov 

• www.sensei-insitu.org/tutorials/sc18.html 

At the tutorial 

• USB drive available which contains: 
• All demos shown here 
• A pdf of the slides for reference 

• Includes hidden slides with more details not covered here due to time 
restrictions

http://www.sensei-insitu.org/tutorials/sc18.html


Outline
• Introduction to In Situ Analysis and Visualization 

• SENSEI In Situ Data Interface 

• Instrumenting data sources and endpoints (C++) 

• SENSEI In Situ Demonstrations with Coupled Infrastructures 
– Data extracts with Libsim 
– Computational monitoring with ParaView Catalyst  
– Autocorrelation with ADIOS 
– Using SENSEI via Python 

• In Situ Costs and Performance 
• Closing thoughts



Setting up the VM



VirtualBox

• Download VirtualBox 

• & VirtualBox extensions 

• Update Guest additions 
in theVM, if your 
VirtualBox is not 5.2.16



Import Appliance

• File->Import appliance 

• locate sensei-sc18.ova



Import Appliance

• Check reinitialize mac 
address



Start the VM

• Start the VM 

• Change network settings 

• VirtualBox default should 
work



VM Layout

~/sensei_insitu/software	

• ADIOS, ParaView, VisIt, VTK, SENSEI installs 

• Use modules to select a SENSEI install. sensei/<version>-<backend> 
– $	module	load	sensei/2.1.1-libsim	

~/sensei_insitu/demos/sc18	

• demo codes and SENSEI miniapps used in the tutorial 

VM access: 
sensei 
sc18_password



Getting started on cori



Demos on cori

• take an account, copy user name & password, cross it off the list and pass list 
on. 

• fill out user agreement, turn them in before the break 

• log in 
– 	ssh	–X	<user	name>@cori.nersc.gov	

• demos need to be run from scratch file system 
– cd	$SCRATCH	

– ln	–s	/project/projectdirs/m636/sensei_insitu	$SCRATCH



Starting jobs on cori

We have 40 nodes, one per account. to use the reservation add 
--reservation=SC18_SENSEI	

to salloc command



Introduction to in situ analysis



Welcome! Why are we here?

Problem: FLOPS >> I/O, potential for lost 
science 

Approach: do as much processing as 
possible while data still resident in 
memory? 

Why This Tutorial? To inform you of 
issues involved, to show you what 
technologies are available and how to 
use them.



What are the problems?

Not enough I/O capacity on current HPC systems, and 
the trend is getting worse. 

If there’s not enough I/O, you can’t write data to storage, 
so you can’t analyze it: lost science. 

Energy consumption: it costs a lot of power to write data 
to disk. 

Opportunity for doing better science (analysis) when 
have access to full spatiotemporal resolution data.



Five orders of magnitude between compute and I/O 
capacity on Titan Cray system at ORNL

Computation 
125 PB/s

Image courtesy Ken Moreland
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Five orders of magnitude between compute and I/O 
capacity on Titan Cray system at ORNL

Computation 
125 PB/s

Node memory 
4.5 PB/s

Node memory 
4.5 PB/s

Interconnect 
24 TB/s

Storage 
1.4 TB/s

Interconnect 
24 TB/s

O(2)

O(2)

O(1)

Image courtesy Ken Moreland



Trends in recent HPC systems



A real example



What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis 
program reads that data and operates on it.
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What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis 
program reads that data and operates on it.

• In situ processing: process data as it produced without writing to 
and reading from storage. Processed “in place”. 
– Many flavors/terms: tightly coupled, loosely coupled, in transit, co-processing, etc. 
– Practical view: anything processed but not written to persistent storage is in situ



Generic processing sequence

1. initialize	sim	

2. do	

3. 		compute	new	state	

4. 		if	do_io	write	plot	file	

5. while	!done	

6. finalize	sim



Generic processing sequence w/ in situ

1. initialize	sim	

2. if	do_insitu	initialize	in	situ	
3. do	

4. 		compute	new	state	

5. 		if	do_io	write	plot	file	

6. 		if	do_insitu	execute	in	situ	
7. while	!done	

8. if	do_insitu	finalize	insitu	
9. finalize	sim



Generic processing sequence w/ in situ

1. initialize	sim	

2. if	do_insitu	initialize	in	situ	
3. do	

4. 		compute	new	state	

5. 		if	do_io	write	plot	file	

6. 		if	do_insitu	execute	in	situ	
7. while	!done	

8. if	do_insitu	finalize	insitu	
9. finalize	sim

execute is where things get 
interesting 

• shared address space  zero 
copy data transfers to shared 
or unique compute resources 

• staging transfer sends data to 
a de-coupled parallel job, 
potentially asynchronous, 
potentially different jobs size



In situ vs In transit



In situ vs In transit

Simulation Cores
In Situ/In Transit Cores

In situ – no data 
movement: 

Simulation and in 
situ methods 

share memory



In situ vs In transit

Simulation Cores
In Situ/In Transit Cores

In situ – no data 
movement: 

Simulation and in 
situ methods 

share memory

In transit – data 
is moved: 
Simulation and 
in situ methods 
do not share 
memory



The story is much more interesting than “in situ” vs. “in 
transit”

In situ vs. in transit is an 
oversimplification of a much richer 
problem space 

The “In Situ Terminology Project” 
• A community effort (>50 participants) 
• Identify “basis vectors” for describing 

aspects of in situ processing 
– Integration Type, Proximity, Access, 

Division of Execution, Operation 
Controls, Output Type



Co-processingIn Transit

In Situ

In Situ

In situ: an ”umbrella definition”

In situ is term that covers a lot of 
territory:

In Situ Terminology project: 
http://ix.cs.uoregon.edu/~hank/insituterminology/ 
Community effort to identify basis vectors and name them.



In situ has been around a long time: ancient history
E. Zajac, CACM 7(3), Mar 1964. 

Direct-to-film process (simulation, calligraphic 
display exposes film) movie of a satellite 
orbiting a planet. 

Is this in situ? 
• Yes: no data ever landed on disk. 

Why did he do it? 
• “Standard practice” for that era, and many 

years that followed: direct-to-media more 
efficient. 

Link to movie page



The 1990s: the golden era of coprocessing
Main idea: systems/methods that support 

interactive computation, computational 
monitoring and steering. 

Packages from this era (partial list): 
• pV3: custom distributed memory code 

(Haimes) 
• AVS: co-routine processing (serial, mostly) 
• CUMULVS: distributed memory M-to-N 

visualization, steering (based on PVM) 
(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling 
a multi-phase reservoir simulator with AVS.
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Common design patterns of 1990s

Rank 0 Rank N…

Client

GUI

Many-to-one: AVS

Rank 0 Rank N…

GUI

Rank 0 Rank N

Client

“Tightly coupled”: pV3, 
custom projects

Rank 0 Rank N…

GUI

Rank 0 Rank M

Client

“Loosely coupled”, M-to-
N: CUMULVS

…



Computational steering – human in the loop
Main idea: rapid convergence 

Example: protein structure prediction, find 
optimal-energy conformation from initial 
conditions (NP-hard problem) 

Approach:  
• parallel computations that minimize 

energy for individual conformations 
• User can examine any of these, perform 

manual tweaks to get “unstuck” from local 
minimum, then resume calculations. O. Kreylos, N. Max, B. Hamann, S. 

Crivelli, W. Bethel. Interactive Protein 
Manipulation. IEEE Vis 2003, Best 
Application Paper award.



Integrated computational environments
• Simplify building, running 

codes 
• Many add-on capabilities for 

vis, analysis, debugging, data 
I/O, etc. 

Examples: SCIRun, Cactus 
Application (sample): parallel 

binary black hole merger 
computation, in transit vis 
wins SC Bandwidth 
Challenge (2000, 2001, 2002)

!X

Resources used in SC 2002 Bandwidth 
Challenge, in transit workflow



Explorable extracts
Basic ideas: 
• Overcome in situ primary weakness: know before 

you go. 
• Use in situ computation to produce reduced-size 

datasets, e.g., images, data subsets, “extracts” 
like collections of features, etc. 

• These “data extracts” are much smaller in size 
compared to doing full resolution data I/O. 

• Use some post-processing tool to view/analyze/
interact with these extracts. 

Climate modeling example using Catalyst and 
Cinema in our STAR paper. Chen et al., Interactive, Internet Delivery of Visualization 

via Structured, Prerendered Multiresolution Imagery. 
TVCG 14(2), 2008.

Bauer, et al., In Situ Methods, Infrastructures, and Applications on HPC Platforms, a 
State-of-the-Art (STAR) Report, Computer Graphics Forum, 35(3), 2016.



In situ projects over the years (approximate, partial)

1964: Zajac, direct-to-film animations 
1990s: Code coupling, computational steering: 
 AVS 
 pV3 
 CUMULVS 
2000s (early): Integrated Computational 

Environments: 
 SCIRun 
 CACTUS

2000s (late): Computing Extracts for Post Hoc 
Use 

 Multiresolution, precomputed images 
 Topology 
 Geometry 
Present day: 
 VisIt/Libsim, Paraview/Catalyst: scalable 

vis infrastructure accessible in situ 
 ADIOS: I/O library approach 
 SENSEI: generic in situ interface 
 Other nascent efforts



Roadmap of In Situ Software Infrastructure for Today

SENSEI Generic In Situ Interface

ADIOS Miniapp from 
SENSEI software collection

Sim codes: 
LAMMPS

ADIOS ParaView/ 
Catalyst

VisIt/ 
Libsim

OSPray

VTK-mPython



SENSEI System Overview 



In situ infrastructures 
Relatively new. Until recently, ad hoc, proof-of-concept prototypes. However, several production 

quality in situ infrastructures have emerged 

ADIOS provides tools for in situ I/O , data movement and analysis 

•  ADIOS allows simulations to adopt in situ techniques by leveraging their advanced I/O 
infrastructures that enable co-analysis pipelines rather than changing the simulator. 

•  The non-intrusive integration provides resilience to third party library bugs and possible jitter in the 
simulation. 

ParaView and VisIt both provide tools for in situ analysis and visualization 
•  Can be tightly or loosely linked to a simulation, allowing the simulation to share data with Catalyst 

for analysis and visualization.  

•  Catalyst, Libsim, and ADIOS enable the opposite flow of information, sending data from the client 
to the simulation, enabling the possibility of in situ and/or monitoring/simulation steering. 

Ascent an emerging in situ framework with an elegant data model, taking advantage of emerging 
VTK-m many core analysis and rendering capabilities  





Can WE…. 

Enable use of any in situ framework? 

 

Enable use of any analysis library/tool, even those not designed for in situ? 

 

Develop analysis routines that are portable between codes? 

 

Make it easy to use? 

 

 

 



The original problem set 

Libsim 
www.olcf.ornl.gov/center-projects/adios 
wci.llnl.gov/simulation/computer-codes/visit  
www.paraview.org/in-situ 
 
 
 



The current problem set 

SENSEI seamlessly & efficiently enables in situ data processing with a 
diverse set of tools & libraries 



Our approach 

Data model 
•  The lingua franca allowing an analyses to access 

simulation data consistently across a variety of 
simulations 

Data adaptor 
•  Convert simulation data to/from the data model 
•  API for accessing the simulation data from the backend 
Analysis adaptor 
•  Present the back-end data consumer to the simulation 
•  API for pushing data through the system from the sim 
Library 
•  Providing off the shelf access to a diverse set of back-

ends. eg Libsim, Catalyst, and ADIOS capabilities 



Write once run everywhere 

The SENSEI API enables connection of simulation data sources to 
visualization and analysis back ends 

•  From the perspective of the simulation, the back ends(analysis/vis codes) 
are interchangeable 

The SENSEI data model enables viz & analysis codes to access data through 
a unified API. 

•  From the perspective of the analysis/visualization code, data 
sources(simulations) are interchangeable 

 



In situ Architecture 

Footer 9 

 
bridge code 

Configurable 
analysis 
adaptor 

Lisbim 
adaptor 

ADIOS 
adaptor 

Python 
adaptor AMReX 

simulation 
AMReX data 

adaptor 

Catalyst 
adaptor 

Yt adaptor 

VTK-m 
adaptor 

“write once, run everywhere” 

SENSEI’s data adaptor 
API and data model 

expose simulation data 
structures to the analysis 

back-end 

SENSEI’s analysis 
adaptors provide the 
API for simulations 
to execute analyses 

Ascent 
adaptor 

C++ Prog. 
adaptor 

Bridge code manages the adaptors 
and periodically pushes data 
through for analysis. Initialize, 

Finalize, Execute 

XML selects one 
of these at runtime 



Use w/ VisIt 

Footer 10 

 
bridge code 

Configurable 
analysis 
adaptor 

Lisbim 
adaptor 

ADIOS 
adaptor 

Python 
adaptor AMReX 

simulation 
AMReX data 

adaptor 

Catalyst 
adaptor 

Yt adaptor 

VTK-m 
adaptor 

Ascent 
adaptor 

C++ Prog. 
adaptor 

<sensei>	
		<!--	libsim		-->	
		<analysis	type="libsim"	frequency="1"	mode="batch"	
								session="rt_sensei_configs/rt_contour.session"	
								image-filename="rt_contour_%ts"	image-width="1555"	
								image-height="815"	image-format="png"	/>	
</sensei>	

 

SENSEI XML config file activates 
the VisIt Libsim Adaptor 

Session file created in VisIt GUI configures VisIt 



IAMR Rayleigh-Taylor Libsim 

Footer 11 

2048 Cores Cori Haswell 



<sensei>	
		<!--	catalyst	-->	
		<analysis	type="catalyst"	pipeline="pythonscript”	
		filename="rt_sensei_configs/rt_contour.py"	/>	
</sensei>	

 

Use w/ ParaView Catalyst 

Footer 12 

 
bridge code 

Configurable 
analysis 
adaptor 

Lisbim 
adaptor 

ADIOS 
adaptor 

Python 
adaptor AMReX 

simulation 
AMReX data 

adaptor 

Catalyst 
adaptor 

Yt adaptor 

VTK-m 
adaptor 

Ascent 
adaptor 

C++ Prog. 
adaptor 

SENSEI XML config file activates 
the ParaView Catalyst Adaptor 

Catalyst python script created in ParaView GUI configures Catalyst 



IAMR Rayleigh-Taylor Catalyst 

Footer 13 

2048 Cores Cori Haswell 



SENSEI API’s 



DataAdaptor API 

bridge 

data 
adaptor 

analysis 
adaptor 

simulation analysis 



bridge 

data 
adaptor 

analysis 
adaptor 

simulation analysis 

DataAdaptor API 

•  Provides the API through which data is accessed 
•  Converts simulation data structures into VTK data structures on demand 
•  Is used by the analysis adaptor to access simulation data on demand 

data 
adaptor 



DataAdaptor API 
		///	@breif	Gets	the	number	of	meshes	a	simulation	can	provide	
		virtual	int	GetNumberOfMeshes(unsigned	int	&numMeshes)	=	0;	

	
		///	@breif	Get	the	name	of	the	i'th	mesh	

		virtual	int	GetMeshName(unsigned	int	id,	std::string	&meshName)	=	0;	

	
		///	@breif	get	a	list	of	all	mesh	names	

		virtual	int	GetMeshNames(std::vector<std::string>	&meshNames);	
	

		///	@brief	Return	the	data	object	with	appropriate	structure.	
		virtual	int	GetMesh(const	std::string	&meshName,	bool	structureOnly,	

				vtkDataObject	*&mesh)	=	0;	

	
		///	@brief	Adds	the	specified	field	array	to	the	mesh.	

		virtual	int	AddArray(vtkDataObject*	mesh,	const	std::string	&meshName,	

				int	association,	const	std::string	&arrayName)	=	0;	
	

		///	@brief	Return	the	number	of	field	arrays	available.	
		virtual	int	GetNumberOfArrays(const	std::string	&meshName,	int	association,	

				unsigned	int	&numberOfArrays)	=	0;	

	
		///	@brief	Return	the	name	for	a	field	array.	

		virtual	int	GetArrayName(const	std::string	&meshName,	int	association,	
				unsigned	int	index,	std::string	&arrayName)	=	0;	

	

		///	@brief	Release	data	allocated	for	the	current	timestep.	
		virtual	int	ReleaseData()	=	0;	



AnalysisAdaptor API 

bridge 

data 
adaptor 

analysis 
adaptor 

simulation analysis 



bridge 

data 
adaptor 

analysis 
adaptor 

simulation analysis 

AnalysisAdaptor API 

•  Provides the API for driving the analysis 

•  Invoked by the bridge from the simulation when it is time for analysis 

•  A DataAdaptor instance is passed, which the analysis code uses to access 
simulation data structures 

 

analysis 
adaptor 



AnalysisAdaptor API 

///	@brief	AnalysisAdaptor	is	an	abstract	base	class	that	defines	
///	the	analysis	interface.	

class	AnalysisAdaptor	:	public	vtkObjectBase	
{	

public:	

	///	@brief	Execute	the	analysis	routine.	
	virtual	int	Execute(DataAdaptor*	data)	=	0;	

	
				///	@breif	Finalize	the	analyis	routine	

				virtual	int	Finalize()	=	0;	

};	
 



bridge 

data 
adaptor 

analysis 
adaptor 

simulation analysis 

Bridge API 

•  Is part of the simulation code 
•  Is where you create, initialize, and manage your data and analysis adaptors 
•  Is where you execute the analyses adaptors as needed 
•  Typically consists of 3 functions: Initialize, Compute and Finalize 



Simulation loop with bridge code 

Footer 22 

1.  initialize	sim	
2.  if	do_insitu	bridge::initialize	
3.  do	
4.  		compute	new	state	
5.  		if	do_io	write	plot	file	
6.  		if	do_insitu	bridge::execute	
7.  while	!done	
8.  if	do_insitu	bridge::finalize	
9.  finalize	sim	



Run time configuration 

Adaptors 
•  SENSEI Configurable analysis. Parses XML and creates and configures one of the other analysis 

adaptors interfacing to the back-ends (Libsim, Catalyst, ADIOS, custom, etc). 

•  Direct integration 

Back-ends 
•  May expose control API via their SENSEI adaptor. In the Configurable analysis adaptor these are 

exposed via XML attributes. 

•  May be scriptable via their own Python bindings adding another layer of control. 

•  May be configured via "state" or "session" files. 

•  Special purpose 

 

Footer 23 



ConfigurableAnalysisAdaptor 

•  a meta analysis. a manager. it configures and invokes one or more of the 
other analysis adaptors 

•  XML specifies analyses and their run time options 

•  Supports ADIOS, Catalyst, Libsim, VTK I/O, and other data consumers 

•  In in transit use cases one XML configures the transport a second configures 
the analysis/backend 



ConfigurableAnalysis XML 

<sensei>	
		<!--	Custom	Analyses	-->	
		<analysis	type="histogram"	mesh="bodies"	array="v"	association="point"	
				bins="10"	enabled="0"	/>	
	
		<!--	VTK	XMLP	I/O	-->	
		<analysis	type="PosthocIO"	mode="paraview"	output_dir="./"	enabled="0">	
				<mesh	name="bodies">	
								<point_arrays>	ids,	m,	v,	f	</point_arrays>	
				</mesh>	
		</analysis>	
	
		<!--	CATALYST	-->	
		<analysis	type="catalyst"	pipeline="pythonscript"	
				filename="../sensei/miniapps/newton/newton_catalyst.py"	enabled="1"	/>	
	
		<!--	LIBSIM	-->	
		<analysis	type="libsim"	plots="Pseudocolor"	plotvars="ids"	
				image-filename="newton_%ts"	image-width="800"	image-height="800"	
				slice-project="1"	image-format="png"	enabled="0"/>	
</sensei> 

Footer 25 



SENSEI Data Model 



Data model roles 

Challenges 
•  large bodies of existing codes with purpose specific non standard data 

models can’t talk to each other 
•  data needs are diverse 
Solutions 
•  Agreement between simulation and analysis on a data model enables the 

exchange of data 
•  Normalization of data model enables a generic solution 
 

data model 

simulation analysis analysis analysis 



What simulation data types does SENSEI support? 

Footer 28 

•  many more purpose specific and 
esoteric data types are supported by 
VTK 

•  SENSEI has no explicit dependence 
on other parts of VTK such as i/o, 
filters, renderering, etc etc 

vtkDataObject 

Uniform Cartesian 

Stretched Cartesian 

Curvilinear (logically Cartesian) 

Unstructured/FEM 

Molecular 

Tabular 

Graphs 

Multi-"block" 

AMR 

Array Collection (no geometry) 

PIC/Point cloud 

www.vtk.org 



vtkDataObject � The key to passing data in SENSEI 

Footer 29 

https://www.vtk.org/doc/nightly/html/classvtkDataObject.html 

•  You can pass any of these 
classes derived from 
vtkDataObject through the 
SENSEI API 

•  Go to the link below. use the 
clickable class diagram to 
navigate / access 
documentation for the specific 
data object types  



Distributed mesh based data in VTK 

Composite Data 
•  Tree based data structures 
•  Think of as multi-block, blocks need not be 

Cartesian or rectangular 
•  Supports many blocks per rank 
•  Provides iterators to walk over local blocks 
•  Limited info about off rank blocks  
Legacy Approach 
•  Each rank has a single instance of vtkDataSet, 

metadata identifies "piece” for unstructured, 
“extents” for Cartesian 

 

Footer 30 

MPI 
rank 0 

MPI 
rank 1 

vtkDataSet 0 

vtkCompositeDataSet 

vtkDataSet 1 

null 

null 



vtkCompositeDataSet � Container for distributed data 

Footer 31 

https://www.vtk.org/doc/nightly/html/classvtkCompositeDataSet.html 

•  Go to the above link. use the clickable class diagram to navigate / access 
documentation for the specific composite data object types  

•  Use vtkCompositeDataIterator::NewIterator() to get an iterator that can visit 
local blocks 



vtkCompositeDataIterator API 

	//	If	SkipEmptyNodes	is	true,	then	nullptr(non-local)	datasets	will	be	skipped.		
void	SetSkipEmptyNodes	(vtkTypeBool);	
	
//	Begin	iterating	over	the	composite	dataset	structure.		
void	InitTraversal	();	

	
	//	Begin	iterating	over	the	composite	dataset	structure.		
void	GoToFirstItem();	
	
//	Move	the	iterator	to	the	next	item	in	the	collection.	
void	GoToNextItem();	

	
//Test	whether	the	iterator	is	finished	with	the	traversal.		
int	IsDoneWithTraversal();	
	
//	Returns	the	current	item.						

vtkDataObject	*GetCurrentDataObject();	
	
//	Flat	index	is	an	index	to	identify	the	data	in	a	composite	data	set			
unsigned	int	GetCurrentFlatIndex();	

Footer 32 



vtkDataSet � Leaves of the tree / legacy model 

Footer 33 

https://www.vtk.org/doc/nightly/html/classvtkDataSet.html 

vtkImageData vtkPolyData vtkStructuredGrid vtkUnstructuredGrid vtkRectilinearGrid 



VTK’s take on mesh based data 

•  Either point or cell centered, or no centering 
at all 

–  vtkPointData � a collection of point 
centered arrays. Must have number of 
points elements 

–  vtkCellData � a collection of cell centered 
arrays. Must have number of cells elements 

–  vtkFieldData � a collection of arrays with 
no centering. Can be any lengtth 

•  Mesh/block dimensions are in units of points 

 

Footer 34 

Point data 

Cell data 

https://www.vtk.org/doc/nightly/html/classvtkDataSetAttributes.html 



vtkDataArray � passing simulation data 

•  vtkFloatArray, vtkDoubleArray, vtkIntArray, etc are a façade 
hiding templates vtkAOSDataArrayTemplate<ValueTypeT>	

•  VTK’s AOS type is the default for all arrays in VTK 

•  Supports zero copy, can take ownership of a pointer & free/delete when 
finished see XX::SetArray	API 

•  Supports zero copy from alternative layouts, these are derived from 
vtkGenericDataArray<DerivedT,	ValueTypeT>	

–  eg SOA vtkSOADataArrayTemplate<ValueTypeT>	

Footer 35 



vtkDataArray � accessing data for analysis 

•  Supports accessing stored data via pointer	
–  Avoid XX::GetVoidPointer, this may make a deep copy if the layout 

is not VTK’s default layout 
–  Downcast to SOA or AOS type, 

vtkAOSDataArrayTemplate<ValueTypeT> or 
vtkSOADataArrayTemplate<ValueTypeT> and used typed API 
XX::GetPointer 

–  If down casting fails, for instance a new layout is added, fall back to 
XX::GetVoidPointer	

•  Or use VTK’s API for accessing tuples/values, these often are OK given 
modern optimizing compilers	

Footer 36 



zero copy layouts provide pointer equivalent performance 
•  Array of Structures (AOS) 
―  single array with components interleaved 

•  Structure of Arrays (SOA) 
―  each component in its own arrays 

 

Speed & Efficiency 

Footer 37 

x1	y1	z1	 …	x2	y2	z2	 xn	yn	zn	v=	

x1	x2	x3	 …	 xn	vx=	

y1	y2	y3	 …	 yn	vy=	

z1	z2	z3	 …	 zn	vz=	

//	use	the	new	SOA	class	
vtkSOADataArrayTemplate<double>	*soa	=	
			vtkSOADataArrayTemplate<double>::New();	
soa->SetNumberOfComponents(3);	
soa->SetArray(0,	vx,	n,	true);	

soa->SetArray(1,	vy,	n);	
soa->SetArray(2,	vz,	n);	
 

//	VTK's	default	is	AOS,	no	need	to	use	
vtkAOSDataArrayTemplate	
vtkDoubleArray	*aos	=	vtkDoubleArray::New();	
aos->SetNumberOfComponents(3);	
aos->SetArray(v,	3*n,	0);	

 



Zero copy to VTK Arrays 

Memory Layouts in VTK 

•  Array of Structures (AOS) 
―  Vectors/Tensors are a single array with components interleaved 

•  Structure of Arrays (SOA) 
―  Each vector/tensor component in its own arrays 

 

Footer 38 

x1	y1	z1	 	…	x2	y2	z2	 xn	yn	zn	v=	

x1	x2	x3	…		xn	

y1	y2	y3	…		yn	

z1	z2	z3	…		zn	

vx=	

vy=	

vz=	



Zero copy with AOS (Array of Structures) 

//	VTK's	default	is	AOS,	no	need	to	use	vtkAOSDataArrayTemplate	
vtkDoubleArray	*aos	=	vtkDoubleArray::New();	
aos->SetNumberOfComponents(3);	

aos->SetArray(v,	3*nxy,	0);	
aos->SetName("aos");	

	
//	add	the	array	as	usual	
im->GetPointData()->AddArray(aos);	

im->GetPointData()->SetActiveVectors("aos");	
	

//	give	up	our	reference	
aos->Delete(); 

Footer 39 

x1	y1	z1	 	…	x2	y2	z2	 xn	yn	zn	v=	



Zero copy with SOA (structure of arrays) 

//	use	the	SOA	class	
vtkSOADataArrayTemplate<double>	*soa	=	vtkSOADataArrayTemplate<double>::New();	
soa->SetNumberOfComponents(3);	

soa->SetArray(0,	vx,	nxy,	true);	
soa->SetArray(1,	vy,	nxy);	

soa->SetArray(2,	vz,	nxy);	
soa->SetName("soa");	
	

//	add	to	the	image	as	usual	
im->GetPointData()->AddArray(soa);	

im->GetPointData()->SetActiveVectors("soa");	
	
//	git	rid	of	our	reference	

soa->Delete(); 
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x1	x2	x3	…		xn	

y1	y2	y3	…		yn	

z1	z2	z3	…		zn	

vx=	

vy=	

vz=	



Overhead due to VTK data model 

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K 
•  Original: subroutine called, Baseline: through SENSEI bridge 
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Zero copy demo 

This demo shows how to do zero copy using AOS 
and SOA layouts 

Zero-copy passes a vector field to the VTK stream 
line tracer 

Vector field is tangent to concentric circles on a 
domain of -1 to 1 in x and y 

Running the demo 
$	cd	~/sensei_insitu/demos/sc18/zero_copy	
$	vim	zero_copy.cpp	#	view	source	code	(optional)		
$	./zero_copy.sh	

Footer 42 



Instrumenting Data Sources and 
Endpoints with SENSEI



Instrumentation tasks

1. Data
– Decide if you can use sensei::VTKDataAdaptor
– Or write an adaptor derived from sensei::DataAdaptor

2. Analysis
– Decide if you can use existing analyses: Libsim, Catalyst, Adios, etc
– And/Or implement new analyses derived from sensei::AnalysisAdaptor

3. Bridge
– Implement Initialize, Compute, and Finalize methods/functions
– Instrument the simulation to call the bridge code at the right times



Oscillator miniapp overview

• MPI based C++ code that simulates a 
collection of periodic, damped, or decaying 
oscillators over a Cartesian grid.

• Unstructured grid also supported
• Each oscillator is convolved with a Gaussian of a prescribed 

width

• Can randomly place particles and advect them using an 
analytical velocity field

• Executable inputs are oscillator parameters, time resolution, 
length of the simulation, grid dimensions, grid partitioning, 
and number of random particles to generate



Instrumenting the oscillator mini-app to use SENSEI

• Create a class that derives from sensei::DataAdaptor and implements:

– virtual int GetNumberOfMeshes(unsigned int &numMeshes) = 0;

– virtual int GetMeshName(unsigned int id, std::string &meshName) = 0;

– virtual int GetMesh(const std::string &meshName, bool structureOnly, vtkDataObject *&mesh) = 0;

– virtual int GetNumberOfArrays(const std::string &meshName, int association, unsigned int
&numberOfArrays) = 0;

– virtual int GetArrayName(const std::string &meshName, int association, unsigned int index, 
std::string &arrayName) = 0;

– virtual int AddArray(vtkDataObject* mesh, const std::string &meshName, int association, const
std::string &arrayName) = 0;

– virtual int ReleaseData() = 0;



Creating the VTK grid – GetMesh() method
int DataAdaptor::GetMesh(const std::string &meshName, bool structureOnly, vtkDataObject *&mesh)
{

if (meshName != "mesh" && meshName != "ucdmesh" && meshName != "particles")
{

SENSEI_ERROR("the miniapp provides meshes named \"mesh\", \"ucdmesh\", and \"particles\""
" you requested \"" << meshName << "\"")

return -1;
}

DInternals& internals = (*this->Internals);

if (meshName == "ucdmesh")
{

.....
}
else if (meshName == "mesh")
{

if (!internals.Mesh)
{

internals.Mesh = vtkSmartPointer<vtkMultiBlockDataSet>::New();
internals.Mesh->SetNumberOfBlocks(static_cast<unsigned int>(internals.CellExtents.size()));
for (size_t cc=0; cc < internals.CellExtents.size(); ++cc)

internals.Mesh->SetBlock(static_cast<unsigned int>(cc), this->GetBlockMesh(cc));
}
mesh = internals.Mesh;

}
else if (meshName == "particles")
{

....
}
return 0;

}



Creating the VTK cell data – AddArray() method
int DataAdaptor::AddArray(vtkDataObject* mesh, const std::string &meshName, int association, const std::string &arrayName)
{

DInternals& internals = (*this->Internals);
vtkMultiBlockDataSet* md = vtkMultiBlockDataSet::SafeDownCast(mesh);

if ((meshName == "mesh" || meshName == "ucdmesh") && arrayName == "data" &&
association == vtkDataObject::FIELD_ASSOCIATION_CELLS)

{
for (unsigned int cc=0, max=md->GetNumberOfBlocks(); cc < max; ++cc)
{

....
}

}
else if (meshName == "particles" && association == vtkDataObject::FIELD_ASSOCIATION_POINTS &&

(arrayName == "uniqueGlobalId" || arrayName == "velocity" || arrayName == "velocityMagnitude"))
{

....
}

#ifndef NDEBUG
else
{

SENSEI_ERROR("the miniapp provides a cell centered array named \"data\" "
"on meshes named \"mesh\" or \"ucdmesh\"; or point centered arrays named "
"\"uniqueGlobalId\", \"velocity\" and \"velocityMagnitude\" on a mesh named \"particles\"")

return -1;
}

#endif

return 0;
}



Implementing the bridge to SENSEI

Typically 3 calls:
• Initialize()

– Set the DataAdaptor
– Initialize DataTimeStep
– Specify what analysis will be done. For 

the Oscillator we use the 
ConfigurableAnalysis class.

• Compute()
– For the Oscillator we do this with two 

calls: set_data() / set_particles() and 
analyze(), so that SENSEI may be 
disabled in benchmarks

• Finalize()

bridge

simulation

initialize

compute

finalize



Initializing the bridge
void initialize(MPI_Comm comm, size_t window, size_t nblocks,

size_t n_local_blocks, int domain_shape_x, int domain_shape_y,
int domain_shape_z, int* gid, int* from_x, int* from_y, int* from_z,
int* to_x, int* to_y, int* to_z, int* shape, int ghostLevels,
const std::string& config_file)

{
timer::MarkEvent mark("oscillators::bridge::initialize");

(void)window;
(void)comm;

GlobalDataAdaptor = vtkSmartPointer<oscillators::DataAdaptor>::New();
GlobalDataAdaptor->Initialize(nblocks, shape, ghostLevels);
GlobalDataAdaptor->SetDataTimeStep(-1);

for (size_t cc=0; cc < n_local_blocks; ++cc)
{

GlobalDataAdaptor->SetBlockExtent(gid[cc],
from_x[cc], to_x[cc], from_y[cc], to_y[cc],
from_z[cc], to_z[cc]);

}

int dext[6] = {0, domain_shape_x, 0, domain_shape_y, 0, domain_shape_z};
GlobalDataAdaptor->SetDataExtent(dext);

GlobalAnalysisAdaptor = vtkSmartPointer<sensei::ConfigurableAnalysis>::New();
GlobalAnalysisAdaptor->Initialize(config_file);

}



Executing the in situ

void set_data(int gid, float* data)
{

GlobalDataAdaptor->SetBlockData(gid, data);
}

void set_particles(int gid, const std::vector<Particle> &particles)
{

GlobalDataAdaptor->SetParticles(gid, particles);
}

void analyze(float time)
{

GlobalDataAdaptor->SetDataTime(time);
GlobalDataAdaptor->SetDataTimeStep(GlobalDataAdaptor->GetDataTimeStep() + 1);
GlobalAnalysisAdaptor->Execute(GlobalDataAdaptor.GetPointer());
GlobalDataAdaptor->ReleaseData();

}



Finalizing the bridge

void finalize(size_t k_max, size_t nblocks)
{

(void)k_max;
(void)nblocks;

GlobalAnalysisAdaptor->Finalize();

GlobalAnalysisAdaptor = nullptr;
GlobalDataAdaptor = nullptr;

}



Data Extracts with VisIt/Libsim



Libsim puts VisIt in situ

• VisIt provides Libsim, a library 
that simulations may use to let 
VisIt connect and access their 
data

• Avoids I/O and data movement

• Supports automated data 
product generation

• Also supports user-driven 
exploration of simulation data

VisIt
• Versatile open source software for visualizing and 

analyzing extreme scale simulation datasets

Libsim
• Enables simulations to perform data analysis and 

visualization in situ by applying VisIt algorithms to 
data. 

VisIt
runtime 
library

Simulation 
Code

Libsim

Adaptor
(C, C++, 
Fortran)

output



Libsim enables flexible workflows 

• Use the VisIt GUI to connect to 
your simulation and explore!

• Simulations are like any other 
data source

Commands

Metadata

Geometry & 
images

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Extract 
data, XDB

Output

Output

• Create automated routines to 
generate data in batch

• Program directly using Libsim
• Use VisIt session files



Extracts contain the “interesting” stuff from the simulation
– Extracts are orders of magnitude smaller than volume data (avoid 

I/O bottleneck)

– Provides enough geometry and field data that enables useful 
post-hoc exploration

– Surface extracts stored in FieldView XDB format, VTK format, etc.

Simulation
Extracts Visualization

SENSEI Libsim

FieldView



Flexible Extract Export with SENSEI

• Hard-coding plots and 
extracts limits flexibility

• SENSEI XML input file can 
select plots for extract 
creation and for rendering
• Provides hints to Libsim
• Specifies extracts, variables, files to 

write
• Pass session file
• Pass hints to connect interactively

<sensei>
<!-- Libsim: Set up plots using session, save VTK files in batch  -->
<analysis type="libsim" 

frequency="5"
visitdir=“/usr/common/software/sensei/visit“
mode="batch"
session="oscillator-ucdmesh.session"
operation="export"
filename="iso-ghost%ts"
enabled="1"/>

</sensei>

<sensei>
<!-- Libsim Iso ucdmesh: connect VisIt interactively -->
<analysis type="libsim" 

frequency=“10"
visitdir=“/usr/common/software/sensei/visit“
mode=“interactive,paused"
enabled="1"/>

</sensei>

Specifies which 
plots, output files, 
etc.



SENSEI’s Libsim Integration has Advanced

• Supports interactive connections using VisIt GUI
• Supports ghost data
• Supports unstructured meshes
• Use VisIt session files to produce visualizations in batch

• Session files record all of the setup to make a nice visualization
• Workflow: Connect interactively with VisIt -> set up plots -> save a 

session file -> rerun in batch using the session file to specify plots



Ghost Data

• Simulations exchange ghost data 
(additional layers of cells/nodes) 
along processor boundaries to make 
sure enough information is present to 
calculate quantities that need 
neighbor values

• Ghost Data are marked as such so 
they can be used then they are 
needed and skipped when 
appropriate (e.g. avoid double-
counting in histogram)



Ghost Data in Oscillators Mini-app

• SENSEI’s Oscillators mini-
app now supports ghost 
cells

• Enables isosurfaces of cell 
data to be continuous 
across domain boundaries

• Enabled using the –g # 
command line argument to 
generate a user-specified 
number of ghost levels

mpirun –np 4 oscillators –g 2 –f oscillator.xml –t 0.1 samples.osc
Isosurfaces without (left) and with (right) ghost cells



SENSEI API for Ghost Data

• The VTK data representing meshes and fields need to contain extra 
cells/nodes if ghost data are used

• Ghost data must also be marked as ghost

• SENSEI adds new methods in sensei::DataAdaptor that enables the 
adaptor to mark cells/nodes as ghost data

– virtual int GetMeshHasGhostCells(const std::string &meshName, int &nLayers);

– virtual int AddGhostCellsArray(vtkDataObject* mesh, const std::string &meshName);

– virtual int GetMeshHasGhostNodes(const std::string &meshName, int &nLayers);

– virtual int AddGhostNodesArray(vtkDataObject* mesh, const std::string &meshName);

– The default implementations of these methods in indicate that no ghost data 
are present



Ghost Data Encoding

• Ghost data arrays are 
vtkUnsignedCharArray
objects that contain values 
for each cell or node

• The allowable values 
follow the conventions 
used in VisIt and ParaView

• The array name must be 
“vtkGhostType”

• 1=Ghost, 0=Real

//----------------------------------------------------------------------------
int DataAdaptor::GetMeshHasGhostCells(const std::string &/*meshName*/, 
int &nLayers)

{
DInternals& internals = (*this->Internals);
nLayers = internals.ghostLevels;
return 0;

}

//----------------------------------------------------------------------------
int DataAdaptor::AddGhostCellsArray(vtkDataObject *mesh, const std::string &meshName)
{
int retVal = 1;
DInternals& internals = (*this->Internals);
vtkMultiBlockDataSet* md = vtkMultiBlockDataSet::SafeDownCast(mesh);
for (unsigned int cc=0, max=md->GetNumberOfBlocks(); cc < max; ++cc)
{
vtkSmartPointer<vtkImageData>& blockMesh = internals.BlockMesh[cc];
vtkCellData *cd = (blockMesh? blockMesh->GetCellData() : NULL);
if (cd != NULL)
{
if (cd->GetArray("vtkGhostType") == NULL)
{
vtkDataArray *g = CreateGhostCellsArray(cc); // Make vtkUnsignedCharArray.
cd->AddArray(g);
g->Delete();
}

retVal = 0;
}

}
return retVal;

}



Unstructured Grid Support

• SENSEI represents 
unstructured grids using 
vtkUnstructuredGrid

• Contains a set of points
• Contains cells defined by connectivity 

(indices into the points)

• SENSEI’s Libsim integration 
can now pass unstructured 
grids through to VisIt

Some of the unstructured grid cell types supported in VTK



Unstructured Grid Support in Oscillator

• Oscillator exposes a second mesh called ucdmesh that is an 
unstructured representation of its normal structured mesh

• The same fields are returned for both the structured and 
unstructured meshes

Adaptor Changes:
• GetNumberOfMeshes() returns 2
• GetMeshNames() returns “mesh” for index 0 and “ucdmesh” for 

index 1.
• GetMesh() returns the vtkUnstructuredGrid representation of the 

data for index 1



Connecting to a SENSEI simulation using VisIt

• Enable Libsim analysis in the SENSEI 
XML input file
• Set the mode to “interactive” or 

“interactive,paused”
• The paused mode blocks the simulation 

until VisIt connects and lets the 
simulation proceed using the controls in 
VisIt’s Simulation window

• Libsim will write a file called sensei.sim2

• Open sensei.sim2 in VisIt to connect

sensei.sim2

Connect interactively using VisIt GUI by opening sensei.sim2



Libsim Demo

Live Demo run on VM, or 
VM + cori.nersc.gov

• Run oscillator mini-app

• Show effects of ghost cells

• Use session files to produce 
extracts

• Run VisIt interactively

• Interactively connect to 
oscillator simulation



Libsim Demo: Procedure

• Run all on the VM

• Run using a 
combination of the 
VM and 
cori.nersc.gov

• Replace 
USERNAME with 
the token account 
login

SENSEI VM Cori.nersc.gov
%
%
% cd sensei_insitu/demos
% cd sc18/visit_libsim
% ./demo.sh 1 USERNAME
% ./demo.sh 2 USERNAME
% ./demo.sh 3 USERNAME
% ./demo.sh 4 USERNAME
% ./demo.sh 5 USERNAME
% ./demo.sh 6 USERNAME

% cd /project/projectdirs
% cd m636
% cd sensei_insitu/demos
% cd sc18/visit_libsim
% ./demo.sh 1 USERNAME
% ./demo.sh 2 USERNAME
% ./demo.sh 3 USERNAME

If running on Cori, return 
to VM to run steps 4,5,6

NOTE: when running on cori, the demo script will tell 
you to run an salloc command to allocate a node.



Libsim Demo: Oscillator without ghost cells

• This part of the demo runs oscillator without 
ghost cells and renders pictures using a VisIt 
session file

• This can run in the VM or on Cori

• If running on Cori, run the salloc command 
printed by the demo.sh command and run 
again

% ./demo 1 USERNAME
% ./demo 2 USERNAME

Rips in the 
surface

Run oscillator, render images

Display images



Libsim Demo: Oscillator with ghost cells

• This part of the demo runs oscillator with ghost cells and saves isosurface
extracts

• VisIt is then used to visualize the extracts

• Step 3 can run in the VM or on Cori
• Step 3 writes out the directory where files are saved to the console

• Step 4 must be run in the VM

% ./demo 3 USERNAME
% ./demo 4 USERNAME

Run oscillator, make extracts

Open VisIt GUI



Libsim Demo: Client Server to Cori
• Step 4 opens the VisIt GUI

• Click the Open button in 
the Main window

• If Step 3 ran on Cori, 
select “NERSC Cori” from 
the host list to initiate a 
connection to Cori

• If Step 3 ran in the VM, 
skip the Cori only sections

2

1



Libsim Demo: Client Server to Cori - Password

• When connecting to 
Cori, enter your Cori 
account password in 
VisIt’s password 
window

Cori only

1



Libsim Demo: Select Files

• Once connected, paste 
the directory name 
containing the files into 
the File Selection 
Dialog’s path and press 
Enter

• Click on the “iso-
ghost*.vtm” database

• Click OK

1

2

3



Libsim Demo: Engine Chooser

• If opening data that 
reside on Cori, VisIt will 
prompt you which host 
profile should be used to 
launch the VisIt compute 
engine

• The SENSEI_SC18
profile should be 
selected so click OK

1

Cori only



Libsim Demo: Set up Plots

• To set up plots based on 
the VTK extracts that 
SENSEI saved, click the 
“Setup Demo 4” button

1



• When plots appear, note 
how the surfaces do not 
have gaps at domain 
boundaries

• Change the view by 
clicking/dragging on the 
plots

• Move the time slider
• Quit VisIt

Libsim Demo: Interact with Plots

2

1



Libsim Demo: Connect Interactively to Oscillator

• This part of the demo runs oscillator 
with ghost cells and waits for VisIt to 
connect

• We will plot data form oscillator 
interactively and watch it evolve

• Step 5 must be run in the VM

% ./demo 5 USERNAME
% ./demo 4 USERNAME

Run oscillator, wait for VisIt

Cleanup (at the end)



Libsim Demo: Connect Interactively to Oscillator

• Step 5 will open the VisIt GUI

• Open the File Selection 
window

• Select the “sensei.sim2” file
• Click OK

• VisIt will to connect to the 
oscillator

• Click the “Setup Demo 5” 
button to make plots

sensei.sim2
1

2

3
4



Libsim Demo: Let Oscillator Continue

• Click the File menu

• Open the Simulation window

• Click the “run” button in the 
Simulation window to let 
oscillator continue

• Pause the simulation

• Add other plots

• Let the simulation continue 
and watch it evolve

1

2,
5

4



Libsim information

• Information about instrumenting a simulation can be found at the 
following sources:

• Getting Data Into VisIt
(https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf)

• VisIt Example Simulations 
(http://visit.ilight.com/trunk/src/tools/DataManualExamples/Simulations)

• VisIt Wiki (http://www.visitusers.org)
• VisIt Email List (visit-users@email.ornl.gov)

http://www.visitusers.org/


SENSEI + Python 

SENSEI is a powerful tool to connect simulations to 
visualization and analysis tools for in situ use. Here we show 
how to leverage this from a Python based simulation. 
 



SENSEI's Python bindings 

•  SENSEI based on VTK but we use SWIG (Simple Wrapper Interface 
Generator) to generate Python bindings.  

•  VTK's Python wrapper generator, doesn’t wrap many methods due to types 
it doesn’t understand. Too purpose specific and inflexible. 

•  SWIG has extensive C++ compatibility and can be taught to play nice with 
VTK’s wrapper generator 

•  Interface (.i) files control what gets wrapped. We wrap everything in 
SENSEI. 

•  Bound classes and API in Python have same names as in C++. Code looks 
and feels very C++ like. 

 

  
Footer 2 



For developers, extending or adding on to SENSEI 

vtk.i : A SWIG interface file defining 2 macros: 

1.  VTK_SWIG_INTEROP(vtk_t)	
•  defines typemaps for using VTK wrapped VTK classes in SWIG generated 

API (tells SWIG how to play nice with VTK)  

2.  VTK_DERIVED(derived_t)	
•  enable SWIG memory management for wrapped classes derived from VTK 

classes (VTK has unique reference counting implementation) 

       Pass a VTK class to SENSEI 

       Pass a SENSEI class to VTK 

Footer 3 



Instrumenting Python Based Simulations 



Integrating SENSEI in a simulation written in Python 

1.  Compile VTK  with Python enabled. often a part of your chosen back-end. 
eg Catalyst, Libsim. 

2.  Compile SENSEI with Python features enabled 

3.  Write data adaptor using sensei::ProgrammableDataAdaptor or 
sensei::VTKDataAdaptor  

4.  Instrument your simulation, and bridge code. sets up the data adaptor and 
invoke analysis periodically through sensei::ConfigurableAnalysis 
adaptor. 

5.  Create any analysis specific run time configurations needed, eg. SENSEI 
XML files, Catalyst Python scripts, VisIt session files, etc.. 

  
Footer 5 



Newton mini-app 

N-body Gravitational Simulation. A 
single file, <400 lines.	

Solves Newton's law of gravitation 

Velocity Verlet method 

Fi	=	Fj	=	G*mi*mj/rij**2	

xi'	=	vi	

vi'	=	Fi/mi	

	

Footer 6 
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Newton mini-app 

Footer 7 

–  direct solver, O(N**2) 
–  Velocity Verlet 

»  second order, symplectic, conserves 
momentum exactly, time reversible 

–  the simplest possible code 
–  a single file, <400 lines, to better focus on 

use of SENSEI interface 
–  a production quality code could easily be 

thousands of lines (see NBODY6 ~6K 
lines) 



Instrumenting the simulation 

if	__name__	==	'__main__':	
				#	parse	the	command	line	
				…	
	
				#	set	up	the	initial	condition	
				n_bodies	=	args.n_bodies*n_ranks	
				ic	=	uniform_random_ic(n_bodies,	-5906.4e9,	\	
								5906.4e9,	-5906.4e9,	5906.4e9,	10.0e24,	\	
								100.0e24,	1.0e3,	10.0e3)	
	
				ids,x,y,z,m,vx,vy,vz,fx,fy,fz	=	ic.allocate()	
				h	=	args.dt	if	args.dt	else	ic.get_time_step()	
	
				#	run	the	sim	and	analysis	
				i	=	1	
				while	i	<=	args.n_its:	
								velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)	
								i	+=	1	
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Instrumenting the simulation 

				#	set	up	the	initial	condition 
				n_bodies	=	args.n_bodies*n_ranks 
				ic	=	uniform_random_ic(n_bodies,	-5906.4e9,	\ 
								5906.4e9,	-5906.4e9,	5906.4e9,	10.0e24,	\ 
								100.0e24,	1.0e3,	10.0e3) 
				ids,x,y,z,m,vx,vy,vz,fx,fy,fz	=	ic.allocate() 
				h	=	args.dt	if	args.dt	else	ic.get_time_step()	
	
				#	create	an	analysis	adaptor(bridge	code) 
				adaptor	=	analysis_adaptor() 
				adaptor.initialize(args.analysis,	args.analysis_opts)	
	
				#	run	the	sim	and	analysis 
				adaptor.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz) 
				i	=	1 
				while	i	<=	args.n_its: 
								velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h) 
								adaptor.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz) 
								i	+=	1	
	
				#	finish	up 
				adaptor.finalize() 
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Interface to SENSEI (aka the bridge) 

class	analysis_adaptor:	
				def	__init__(self):	
								self.DataAdaptor	=	sensei.VTKDataAdaptor.New()	
								self.AnalysisAdaptor	=	None	
	
				def	initialize(self,	analysis,	args=''):	
								#	select	and	configure	SENSEI	analysis	adaptor	
								…	
	
				def	finalize(self):	
								if	self.Analysis	==	'posthoc':	
												self.AnalysisAdaptor.Finalize()	
	
				def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
								#	convert	simulation	data	to	VTK	
								#	invoke	the	analysis	
								…	

–  Our analysis adaptor bridge selects and 
configures and drives one of a number of 
SENSEI analysis adaptors 

–  Manages an instance of  
sensei::VTKDataAdaptor	to which we will 
create and pass VTK objects to	
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Initializing the in situ analysis 

def	initialize(self,	analysis,	args=''):	
				self.Analysis	=	analysis	
				args	=	csv_str_to_dict(args)	
				#	Libsim	
				if	analysis	==	'libsim':	
								self.AnalysisAdaptor	=	sensei.LibsimAnalysisAdaptor.New()	
								self.AnalysisAdaptor.AddPlots('Pseudocolor','ids',	False,False,	\	
												(0.,0.,0.),(1.,1.,1.),sensei.LibsimImageProperties())	
				#	Catalyst	
				elif	analysis	==	'catalyst':	
								if	check_arg(args,'script'):	
												self.AnalysisAdaptor	=	sensei.CatalystAnalysisAdaptor.New()	
												self.AnalysisAdaptor.AddPythonScriptPipeline(args['script'])	
				#	VTK	I/O	
				elif	analysis	==	'posthoc':	
								if	check_arg(args,'file','newton')	and	check_arg(args,'dir','./')	\	
												and	check_arg(args,'mode','0')	and	check_arg(args,'freq','1'):	
												self.AnalysisAdaptor	=	sensei.VTKPosthocIO.New()	
												self.AnalysisAdaptor.Initialize(comm,	args['dir'],args['file'],	\	
																[],['ids','fx','fy','fz','f','vx','vy','vz','v','m'],	\	
																int(args['mode']),int(args['freq']))	
				#	Configurable	
				elif	analysis	==	'configurable':	
								if	check_arg(args,'config'):	
												self.AnalysisAdaptor	=	sensei.ConfigurableAnalysis.New()	
												self.AnalysisAdaptor.Initialize(comm,	args['config'])	
	
				if	self.AnalysisAdaptor	is	None:	
								status('ERROR:	Failed	to	initialize	"%s"\n'%(analysis))	
								sys.exit(-1)	
 

Select and configure one of the existing 
SENSEI analysis adaptors from command 
line arguments 
•  We are using Libsim, Catalyst, and 

VTKPosthocIO SENSEI analysis classes 
directly through the bindings 

•  SENSEI's Configurable analysis class 
also exposes these and more and is 
configurable via an XML file. Eg ADIOS 

Footer 11 



Invoking in situ back analysis 

def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
	
				status('%	5d\n'%(i))	if	i	>	0	and	i	%	70	==	0	else	None	
				status('.')	
	
				#	construct	VTK	a	dataset	
				node	=	points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)	
				mb	=	vtk.vtkMultiBlockDataSet()	
				mb.SetNumberOfBlocks(n_ranks)	
				mb.SetBlock(rank,	node)	
	
				#	pass	it	to	the	data	adaptor	
				self.DataAdaptor.SetDataTime(t)	
				self.DataAdaptor.SetDataTimeStep(i)	
				self.DataAdaptor.SetDataObject(mb)	
	
				#	execute	the	in	situ	analysis	
				self.AnalysisAdaptor.Execute(self.DataAdaptor)	
	
				#	free	up	memory	
				self.DataAdaptor.ReleaseData() 

1.  create and pass Multi-block (tree 
based) dataset to SENSEI data 
adaptor 

–  each rank is responsible for a leaf in 
the tree 

2.  pass time and step number to data 
adaptor 

3.  invoke the SENSEI analysis adaptor 

4.  release memory held in the adaptor 
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Create the VTK dataset 

def	points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
				nx	=	len(x)	
				#	convert	simulation	to	VTK	data	structures	
				v_pts	=	to_vtk_points(nx,x,y,z)	
				v_cells	=	to_vtk_cells(nx)	
				v_ids	=	to_vtk_scalars(nx,'ids',ids)	
				v_m	=	to_vtk_scalars(nx,'m',m)	
				v_v,v_mv	=	to_vtk_vector(nx,'v',vx,vy,vz)	
				v_f,v_mf	=	to_vtk_vector(nx,'f',fx,fy,fz)	
				#	package	it	all	up	in	a	poly	data	set	
				pd	=	vtk.vtkPolyData()	
				pd.SetPoints(pts)	
				pd.GetPointData().AddArray(v_ids)	
				pd.GetPointData().AddArray(v_m)	
				pd.GetPointData().AddArray(v_v)	
				pd.GetPointData().AddArray(v_mv)	
				pd.GetPointData().AddArray(v_f)	
				pd.GetPointData().AddArray(v_mf)	
				pd.SetVerts(cells)	
				return	pd 

Strategy 
1.  create VTK arrays 
2.  pass them to a VTK dataset 

 

Who owns what? 

–  VTK uses reference counting. Python 
does too. Unfortunately they don't talk to 
each other without some extra code. 

–  Tell VTK to make a deep copy if the array 
goes out of scope 
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Dataset geometry 

def	to_vtk_points(nx,x,y,z):	
				xyz	=	np.empty(3*nx,	dtype=np.float32)	
				xyz[::3]	=	x[:]	
				xyz[1::3]	=	y[:]	
				xyz[2::3]	=	z[:]	
				vxyz	=	vtknp.numpy_to_vtk(xyz,	deep=1)	
				vxyz.SetNumberOfComponents(3)	
				vxyz.SetNumberOfTuples(nx)	
				pts	=	vtk.vtkPoints()	
				pts.SetData(vxyz)	
				return	pts	
	
def	to_vtk_cells(nx):	
				cids	=	np.empty(2*nx,	dtype=np.int32)	
				cids[::2]	=	1	
				cids[1::2]	=	np.arange(0,nx,dtype=np.int32)	
				cells	=	vtk.vtkCellArray()	
				cells.SetCells(nx,	vtknp.numpy_to_vtk(cids,	\	
								deep=1,	array_type=vtk.VTK_ID_TYPE))	
				return	cells 

 

Strategy 
1.  create an empty array 
2.  interleave x,y,z components or cell length 

and point ids 
3.  pass new array to VTK data structure 

 

TODO – test new zero copy stuff from DG 
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Array based data 

def	to_vtk_scalars(nx,name,s):	
				scalar	=	vtknp.numpy_to_vtk(s,	deep=1)	
				scalar.SetName(name)	
				return	scalar	
	
def	to_vtk_vector(nx,name,vx,vy,vz):	
				#	vector	in	interleaved	layout	
				vxyz	=	np.zeros(3*nx,	dtype=np.float32)	
				vxyz[::3]	=	vx	
				vxyz[1::3]	=	vy	
				vxyz[2::3]	=	vz	
				vector	=	vtknp.numpy_to_vtk(vxyz,	deep=1)	
				vector.SetName('v')	
				#	magnitude	
				mv	=	np.sqrt(vx**2	+	vy**2	+	vz**2)	
				mag	=	vtknp.numpy_to_vtk(mv,	deep=1)	
				mag.SetName('mag%s'%(name))	
				return	vector,mag 

Scalars 
1.  pass new array to VTK data structure 
 

Vectors/Tensors 

1.  create an empty array 

2.  interleave components 
3.  pass new array to VTK data structure 

 

TODO – test new zero copy stuff from DG 
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Writing a DataAdaptor in Python  



Strategy 

•  Add a class that contains functions returning callbacks that implement the 
SENSEI data adaptor API 

–  Closures enable class state to be accessed from the callbacks 

•  This class contains an instance of sensei::ProgramableDataAdaptor	
which has been initialized with your callbacks 

•  Set up call forwarding. when a non-existent member function is called, the 
call is forwarded to the sensei::ProgramableDataAdaptor instance 
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The Programable Data Adaptor 

class	ProgrammableDataAdaptor	:	public	DataAdaptor	
{	
public:	
		using	GetNumberOfMeshesFunction	=	std::function<int(unsigned	int&)>;	
	
		///	Set	the	callable	that	will	be	invoked	when	GetNumberOfMeshes	is	called	
		void	SetGetNumberOfMeshesCallback(const	GetNumberOfMeshesFunction	&callback);	
	
		///	@breif	Gets	the	number	of	meshes	a	simulation	can	provide	
		int	GetNumberOfMeshes(unsigned	int	&numMeshes)	override;	
	
	
		using	GetMeshNameFunction	=	
				std::function<int(unsigned	int,	std::string	&)>;	
	
		///	Set	the	callable	that	will	be	invoked	when	GetMeshName	is	called	
		void	SetGetMeshNameCallback(const	GetMeshNameFunction	&callback);	
	
		///	@breif	Get	the	name	of	the	i'th	mesh	
		int	GetMeshName(unsigned	int	id,	std::string	&meshName)	override;	
	
		.	
		.	
		.	
		continues	for	all	overrides	in	the	data	adaptor	API	
	
};	
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C++ class 
implementing 
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Writing a Python DataAdaptor 

class	data_adaptor:	
				def	__init__(self):																						#	set	up	data	structures	to	capture	sim	data,	and	plumbing	to	ProgramableDataAdaptor	instance		
								…	

				def	__getattr__(self,	*args):												#	forward	calls	to	ProgramableDataAdaptor	instance	
								…	
				def	base(self):																										#	return	PDA	instance		
								…	
				def	validate_mesh_name(self,	mesh_name):	#	helper	checks	mesh	name	
								…	

				def	update(self,	i,t,ids,x,y,z,	
									m,vx,vy,vz,fx,fy,fz):															#	capture	latest	simulation	data	
								…	
				def	set_array_1(self,	vals,	name):							#	Convert	sim	array	into	VTK	scalar	
								…	
				def	set_array_3(self,	vx,vy,vz,	name):			#	Convert	sim	arrays	into	VTK	vector	
								…	
				def	set_geometry(self,	x,y,z):											#	Convert	sim	arrays	into	VTK	Polydata	Dataset	
								…	
				def	get_number_of_meshes(self):										#	get	SENSEI	API	callback	
								…	
				def	get_mesh_name(self):																	#	get	SENSEI	API	callback	
								…	
				def	get_number_of_arrays(self):										#	get	SENSEI	API	callback	
								…	
				def	get_array_name(self):																#	get	SENSEI	API	callback	
								…	
				def	get_mesh(self):																						#	get	SENSEI	API	callback	
								…	
				def	add_array(self):																					#	get	SENSEI	API	callback	
								…	
				def	release_data(self):																		#	get	SENSEI	API	callback	
	 
Footer 19 

the purpose of this class: 
 
1.  provides callbacks 

implementing SENSEI data 
adaptor API 

2.  gives callbacks access to 
simulation state 

3.  installs the callbacks in the 
ProgrammableDataAdaptor 



Writing a Python DataAdaptor 

				def	__init__(self):																						#	set	up	data	structures	to	capture	sim	data,	and	plumbing	to	ProgramableDataAdaptor	instance	
								#	capture	data	from	sim	
								self.arrays	=	{}	
								self.points	=	None	
								self.cells	=	None	
								#	PDA	plumbing.	connect	all	the	callbacks	
								self.pda	=	sensei.ProgrammableDataAdaptor.New()	
								self.pda.SetGetNumberOfMeshesCallback(self.get_number_of_meshes())	
								self.pda.SetGetMeshNameCallback(self.get_mesh_name())	
								self.pda.SetGetNumberOfArraysCallback(self.get_number_of_arrays())	
								self.pda.SetGetArrayNameCallback(self.get_array_name())	
								self.pda.SetGetMeshCallback(self.get_mesh())	
								self.pda.SetAddArrayCallback(self.add_array())	
								self.pda.SetReleaseDataCallback(self.release_data())	
	
				def	__getattr__(self,	*args):												#	forward	calls	to	PDA	instance	
								return	self.pda.__getattribute__(*args)	
	
				def	base(self):																										#	return	PDA	instance	
								return	self.pda	
	
				def	validate_mesh_name(self,	mesh_name):	#	helper	checks	mesh	name	
								if	mesh_name	!=	"bodies":	
												raise	RuntimeError('no	mesh	named	"%s"'%(mesh_name))	
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Install callbacks that 
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Python DataAdaptor 

						
				def	get_number_of_meshes(self):										#	get	SENSEI	API	callback	
								def	callback():	
												return	1	
								return	callback	
	
				def	get_mesh_name(self):																		#	get	SENSEI	API	callback	
								def	callback(idx):	
												if	idx	!=	0:	raise	RuntimeError('no	mesh	%d'%(idx))	
												return	'bodies'	
								return	callback	
	
				def	get_number_of_arrays(self):											#	get	SENSEI	API	callback	
								def	callback(mesh_name,	assoc):	
												self.validate_mesh_name(mesh_name)	
												return	len(self.arrays.keys())	\	
																if	assoc	==	vtk.vtkDataObject.POINT	else	0	
								return	callback	
	
				def	get_array_name(self):																	#	get	SENSEI	API	callback	
								def	callback(mesh_name,	assoc,	idx):	
												self.validate_mesh_name(mesh_name)	
												return	self.arrays.keys()[idx]	\	
																if	assoc	==	vtk.vtkDataObject.POINT	else	0	
								return	callback	
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Python DataAdaptor 
def	get_mesh(self):																						#	get	SENSEI	API	callback	
								def	callback(mesh_name,	structure_only):	
												self.validate_mesh_name(mesh_name)	
												#	local	bodies	
												pd	=	vtk.vtkPolyData()	
												if	not	structure_only:	
																pd.SetPoints(self.points)	
																pd.SetVerts(self.cells)	
												#	global	dataset	
												mb	=	vtk.vtkMultiBlockDataSet()	
												mb.SetNumberOfBlocks(n_ranks)	
												mb.SetBlock(rank,	pd)	
												return	mb	
								return	callback	
	
				def	add_array(self):																					#	get	SENSEI	API	callback	
								def	callback(mesh,	mesh_name,	assoc,	array_name):	
												self.validate_mesh_name(mesh_name)	
												if	assoc	!=	vtk.vtkDataObject.POINT:	
																raise	RuntimeError('no	array	named	"%s"	in	cell	data'%(array_name))	
												pd	=	mesh.GetBlock(rank)	
												pd.GetPointData().AddArray(self.arrays[array_name])	
								return	callback	
	
				def	release_data(self):																		#	get	SENSEI	API	callback	
								def	callback():	
												self.arrays	=	{}	
												self.points	=	None	
												self.cells	=	None	
								return	callback	
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The closure pattern: a 
function that returns a 
function. The returned 

function can see/access 
data that is in the scope 

of the outer/returning 
function. here it gives us 
access to a reference to 

“self”, and simulation 
state stored therein. 



Python DataAdaptor 

				def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
								#	update	the	state	arrays	
								self.set_array_1(ids,	'ids')	
								self.set_array_1(m,	'm')	
								self.set_array_3(vx,vy,vz,	'v')	
								self.set_array_3(fx,fy,fz,	'f')	
								self.set_geometry(x,y,z)	
								self.SetDataTime(t)						#	fwd	to	PDA	
								self.SetDataTimeStep(i)		#	fwd	to	PDA	
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Python DataAdaptor 

	
				def	set_array_1(self,	vals,	name):	
								arr	=	vtknp.numpy_to_vtk(vals,	1)	
								arr.SetName(name)	
								self.arrays[name]	=	arr	
	
				def	set_array_3(self,	vx,vy,vz,	name):	
								#	vector	
								nx	=	len(x)	
								vxyz	=	np.zeros(3*nx,	dtype=vx.dtype)	
								vxyz[::3]	=	vx	
								vxyz[1::3]	=	vy	
								vxyz[2::3]	=	vz	
								vtkv	=	vtknp.numpy_to_vtk(vxyz,	deep=1)	
								vtkv.SetName(name)	
								self.arrays[name]	=	vtkv	
								#	mag	
								mname	=	'mag%s'%(name)	
								mv	=	np.sqrt(vx**2	+	vy**2	+	vz**2)	
								vtkmv	=	vtknp.numpy_to_vtk(mv,	deep=1)	
								vtkmv.SetName(mname)	
								self.arrays[mname]	=	vtkmv	
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Python DataAdaptor 

	
				def	set_geometry(self,	x,y,z):	
								#	points	
								nx	=	len(x)	
								xyz	=	np.zeros(3*nx,	dtype=x.dtype)	
								xyz[::3]	=	x[:]	
								xyz[1::3]	=	y[:]	
								xyz[2::3]	=	z[:]	
								vxyz	=	vtknp.numpy_to_vtk(xyz,	deep=1)	
								vxyz.SetNumberOfComponents(3)	
								vxyz.SetNumberOfTuples(nx)	
								pts	=	vtk.vtkPoints()	
								pts.SetData(vxyz)	
								self.points	=	pts	
								#	cells	
								cids	=	np.empty(2*nx,	dtype=np.int32)	
								cids[::2]	=	1	
								cids[1::2]	=	np.arange(0,nx,dtype=np.int32)	
								cells	=	vtk.vtkCellArray()	
								cells.SetCells(nx,	vtknp.numpy_to_vtk(cids,	\	
												deep=1,	array_type=vtk.VTK_ID_TYPE))	
								self.cells	=	cells	
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Python Analysis Backend 



Python Analysis Backend 

•  Enable in situ analysis using all the power and simplicity of Python 

•  Rapid prototyping and design of diagnostics and numerical analysis 

•  Entirely independent of any other backend 

•  Can be coupled to simulations which have no knowledge of Python. for 
instance to a simulation written in Fortran 
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SENSEI Python Analysis Adaptor 

namespace	sensei	{	
	
class	PythonAnalysis	:	public	AnalysisAdaptor	
{	
public:	
			void	SetScriptFile(const	std::string	&file);	
			void	SetInitializeSource(const	std::string	&code);	
	
			int	Initialize();	
	
			int	Execute(sensei::DataAdaptor	*da)	override;	
			int	Finalize()	override;	
};	
	
}		
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wraps the data adaptor 
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forwards API calls to a 
user provided Python 

implementation 
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User Provided Script Template 

def	Initialize():	
			#	your	initialization	code	here	
			return	
	
def	Execute(dataAdaptor):	
			#	your	in	situ	analysis	code	here	
			return	
	
def	Finalize():	
			#	your	tear	down	code	here	
			return  
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Parallel Python code 

●  SENSEI supports ghost zones using the masking conventions defined by 
VisIt (also used by VTK/ParaView) now. The mask array is named 
vtkGhostType 

●  SENSEI’s MPI communicator , which may not be MPI_COMM_WORLD, is 
shared with the Python script via a global variable comm	
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Case Study: Chemical Reaction on 2D Substrate 

Input Data: Proxy simulation of chemical 
reaction on a 2D substrate 

Output of analysis: Area where reaction 
rate exceeds a threshold of 1.0 
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“Area above threshold” Source Code 
	
	
import	numpy	as	np,	matplotlib.pyplot	as	plt	
from	vtk.util.numpy_support	import	*	from	vtk	import	vtkDataObject,	vtkCompositeDataSet	
	
#	default	values	of	control	parameters	
threshold	=	0.5	
mesh	=	''	
array	=	''	
cen	=	vtkDataObject.POINT	
out_file	=	'area_above.png'		
times	=	[]	
area_above	=	[]	
	
def	pt_centered(c):	
				return	c	==	vtkDataObject.POINT	
	
def	Execute(adaptor):	
				#	get	the	mesh	and	arrays	we	need	
				dobj	=	adaptor.GetMesh(mesh,	False)	
				adaptor.AddArray(dobj,	mesh,	cen,	array)	
				adaptor.AddGhostCellsArray(dobj,	mesh)	
				time	=	adaptor.GetDataTime()	
				#	compute	area	above	over	local	blocks	
				vol	=	0.	
				it	=	dobj.NewIterator()	
				while	not	it.IsDoneWithTraversal():	
								#	get	the	local	data	block	and	its	props	
								blk	=	it.GetCurrentDataObject()	
								#	get	the	array	container	
								atts	=	blk.GetPointData()	if	pt_centered(cen)	\	
												else	blk.GetCellData()	
								#	get	the	data	and	ghost	arrays	
								data	=	vtk_to_numpy(atts.GetArray(array))	
								ghost	=	vtk_to_numpy(atts.GetArray('vtkGhostType'))	
								#	compute	the	area	above	
								ii	=	np.where((data	>	threshold)	&	(ghost	==	0))	
								vol	+=	len(ii[0])*np.prod(blk.GetSpacing())	
								it.GoToNextItem()	
				#	compute	global	area	
				vol	=	comm.reduce(vol,	root=0,	op=MPI.SUM)	
				#	rank	zero	writes	the	result	
				if	comm.Get_rank()	==	0:	
								times.append(time)	
								area_above.append(vol)	
	
def	Finalize():	
				if	comm.Get_rank()	==	0:	
								plt.plot(times,	area_above,	'b-',	linewidth=2)	
								plt.xlabel('time')	
								plt.ylabel('area')	
								plt.title('area	Above	%0.2f'%(threshold))	
								plt.savefig(out_file)	
				return	0			
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import	numpy	as	np,	matplotlib.pyplot	as	plt	
from	vtk.util.numpy_support	import	*	from	vtk	import	vtkDataObject,	vtkCompositeDataSet	
	
#	default	values	of	control	parameters	
threshold	=	0.5	
mesh	=	''	
array	=	''	
cen	=	vtkDataObject.POINT	
out_file	=	'area_above.png'		
times	=	[]	
area_above	=	[]	
	
def	pt_centered(c):	
				return	c	==	vtkDataObject.POINT	
	

def	Execute(adaptor):	
				#	get	the	mesh	and	arrays	we	need	
				dobj	=	adaptor.GetMesh(mesh,	False)	
				adaptor.AddArray(dobj,	mesh,	cen,	array)	
				adaptor.AddGhostCellsArray(dobj,	mesh)	
				time	=	adaptor.GetDataTime()	
				#	compute	area	above	over	local	blocks	
				vol	=	0.	
				it	=	dobj.NewIterator()	
				while	not	it.IsDoneWithTraversal():	
								#	get	the	local	data	block	and	its	props	
								blk	=	it.GetCurrentDataObject()	
								#	get	the	array	container	
								atts	=	blk.GetPointData()	if	pt_centered(cen)	\	
												else	blk.GetCellData()	
								#	get	the	data	and	ghost	arrays	
								data	=	vtk_to_numpy(atts.GetArray(array))	
								ghost	=	vtk_to_numpy(atts.GetArray('vtkGhostType'))	
								#	compute	the	area	above	
								ii	=	np.where((data	>	threshold)	&	(ghost	==	0))	
								vol	+=	len(ii[0])*np.prod(blk.GetSpacing())	
								it.GoToNextItem()	
				#	compute	global	area	
				vol	=	comm.reduce(vol,	root=0,	op=MPI.SUM)	
				#	rank	zero	writes	the	result	
				if	comm.Get_rank()	==	0:	
								times.append(time)	
								area_above.append(vol)	
	
	

def	Finalize():	
				if	comm.Get_rank()	==	0:	
								plt.plot(times,	area_above,	'b-',	linewidth=2)	
								plt.xlabel('time')	
								plt.ylabel('area')	
								plt.title('area	Above	%0.2f'%(threshold))	
								plt.savefig(out_file)	
				return	0			
	



Configurable Analysis XML 

<sensei>	
		<analysis	type="python"	script_file="area_above.py"	enabled="1">	
				<initialize_source>	
threshold=1.	
mesh='mesh'		
array='data'		
cen=1	
					</initialize_source>	
		</analysis>	
</sensei>		
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path to the user provided 
Python script 

Python code that 
executes before user’s 

Initialize function 



Running the demo 

This demo shows Python based analysis from a code written in C++. The surface area 
where the data exceeds a runtime specified threshold over a 2D domain is calculated 
at each update. At the end of the run, an image showing the calculation over time is 
produced. 

	
VM	
cd	~/sensei_insitu/demos/sc18/python	
./oscillator_python.sh	
	
Cori	
cd	$SCRATCH	
salloc	-N	2	-C	haswell	-t	01:00:00	\	
				-q	regular	--reservation=SC18_SENSEI	
./sensei_insitu/demos/sc18/adios/oscillator_python.sh	
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Data management tradeoffs at exascale à to hybrid staging 

Balance of memory size and speed 

Feedback for node designs with NVRAM, larger 
memory, on-chip NIC  

Network throughput and latency impact on SDMA tasks 

Placement of operations in concert with solver and 
network topology 

 

 

Explore node layout choices for data management 



4	 Exascale	Computing	Project	

What	is	ADIOS	
•  An extendable framework that allows developers to 

plug-in 
–  I/O methods: Aggregate, Posix, MPI 
–  Services:  Compression, Decompression 
–  Formats: HDF5, netcdf, ADIOS-BP,… 
–  Plug-ins: Analytic, Visualization 

•  Incorporates the “best” practices in the I/O 
middleware layer 

•  Bindings	to	F90,	C++,	C,	Python,	R,	Java,	Matlab 

•  https://csmd.ornl.gov/adios, 
https://github.com/ornladios/ADIOS,   (1.13.1) 
https://github.com/ornladios/ADIOS2   (2.3 in Dec)  

Interface)to)apps)for)descrip/on)of)data)(ADIOS,)etc.))

Buffering)Feedback) )Schedule)

Mul/Bresolu/on)
methods)

Data)Compression)
methods)

Data)Indexing)
(FastBit))methods)

Data)Management)Services)

Workflow))Engine) Run/me)engine) Data)movement)Provenance)

Plugins)to)the)hybrid)staging)area)

Visualiza/on)Plugins)Analysis)Plugins)

Parallel)and)Distributed)File)System)

IDX) HDF5)AdiosBbp) pnetcdf) “raw”)data) Image)data)

Viz.)Client)
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What simulation data types does SENSEI support? 

Footer 6 

•  many more purpose specific and 
esoteric data types are supported by 
VTK 

•  no explicit dependence on other 
parts of VTK such as i/o, filters, 
renderering, etc etc 

vtkDataObject 

Uniform Cartesian 

Stretched Cartesian 

Curvilinear (logically Cartesian) 

Unstructured/FEM 

Molecular 

Tabular 

Graphs 

Multi-"block" 

AMR 

Array Collection (no geometry) 

PIC/Point cloud 

www.vtk.org 
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In transit demo  

The demo runs 2 parallel MPI jobs, in the first the oscillator sends data through 
the ADIOS Analysis adaptor. In the second the end point uses the ADIOS 
data adaptor to receive. 

SENSEI XML is displayed in cyan along with mpiexec/srun commands in white. 
The first job’s output is displayed in red, the second job’s output in green 

srun “–r	X” argument tells to start the job on node X 
 
cd	$SCRATCH	

salloc	-N	2	-C	haswell	-t	01:00:00	\	

				-q	regular	--reservation=SC18_SENSEI	

./sensei_insitu/demos/sc18/adios/in_transit_libsim.sh	

	

Footer 8 



In transit demo (VM)  

The demo runs 2 parallel MPI jobs, in the first the oscillator sends data through 
the ADIOS Analysis adaptor. In the second the end point uses the ADIOS 
data adaptor to receive. 

SENSEI XML is displayed in cyan along with mpiexec/srun commands in white. 
The first job’s output is displayed in red, the second job’s output in green 

 
cd	~/sensei_insitu/demos/sc18/adios	

./in_transit_libsim.sh	

	

Footer 9 



Demo output 

Footer 10 

rendered with libsim 

rendered with catalyst 



Design and execution patterns 

MxN MxN 

Research focus areas: 
•  MxN data 

redistribution 
•  Depth of copies 

N producer ranks, 
N consumer ranks 
Unidirectional 
data movement/
control 
(N:N) 

M producer ranks, 
N consumer ranks 
Unidirectional 
data movement/
control 
(M:N) 

M producer ranks, 
N1 and N2 
consumer ranks, 
Unidirectional 
data movement/
control 
(M:<N1, N2>) 

•  Leveraging arch 
features like NVRAM 
for staging 

•  Leveraging 3rd party 
tools like TensorFlow 
for ML-based 
analytics 

•  Specific science app 
use case drivers 



SENSEI In Situ Demonstrations
Computational Monitoring with ParaView/Catalyst



Agenda

• Overview of ParaView/Catalyst Functionality


• Catalyst Editions


• Python Pipelines


• Live Connections for Computational Monitoring


• Demo / Exercise



ParaView & Catalyst
• Scaled to 106 MPI ranks on ALCF’s Mira BG/Q


• SC16 visualization showcase winner generated animation using Catalyst


• HPCWire Best HPC Visualization Product or Technology


• 2011 (VTK), 2012, 2014 (runner-up), 2016 Editor’s Choice (ParaView)


• 2015 Reader’s Choice – tie (Paraview)


• Used on many HPC architectures: Cray, BlueGene, SGI, etc.



What Can Catalyst Do?
• Catalyst can save


• A subset of your data (usu. only useful for small tests)

• Scripts can determine when to start/stop saving data


• A sequence of images

• 1+ per timestep; multiple views are possible.


• A Cinema database

• A separate image per "actor", with per-pixel depth & scalar values.

• Interactive post hoc re-coloring & composition of images via depth & 

scalar values.



What Can Catalyst Do?

• Two use cases:


• Extremely low overhead with Catalyst Editions and a fixed visualization

• Only compile portions of ParaView and VTK that you will use

• Pipeline configured via C++


• Extremely flexible visualizations with Catalyst Python scripts

• ParaView can write a Python script you can customize

• Change scripts on a per-job basis



Catalyst Editions

• Reduce the number of libraries built and linked to reduce startup time and 
memory overhead.


• Works with either static or dynamic library linkage.


• Especially important on large machines if dynamic linking is used as link 
loaders have much less work to do.


• Reduces both executable file size and resident memory usage, but 
reduces flexibility since some functionality will no longer be present.

In depth: https://blog.kitware.com/paraview-catalyst-editions-what-are-they/ 
https://www.paraview.org/Wiki/Generating_Catalyst_Source_Tree

https://blog.kitware.com/paraview-catalyst-editions-what-are-they/
https://www.paraview.org/Wiki/Generating_Catalyst_Source_Tree


Fixed Catalyst Pipelines

• SENSEI provides 2 example C++ pipelines:


• A slice filter that saves an image of a slice through your data.


• A particle renderer that uses ParaView's point-Gaussian renderer.


• These are examples if you decide the overhead of Python is too high.



Exercises 1 & 2

• Create a visualization of oscillator mini-app data using a fixed pipeline


• Configure the oscillator to use the Catalyst slice analysis


• Show output images

cd ~/sensei_insitu/demos/sc18/pv_catalyst 
cd /project/projectdirs/m636/sensei_insitu/ 
    demos/sc18/pv_catalyst 
./demo 0 username 
./demo 1 username 
./demo 2 username

On the VM

On Cori

On either



Python Pipelines
• Load a sample of your data in ParaView

• May be a downsampled version, but

• Should include all variables/attributes/fields you wish to analyze.


• Create a visualization pipeline in ParaView by filtering data

• Successive filters generate subsetted or alternative forms of data 

without overwriting the original data, but they do consume memory.

• Choose representation style and visual properties for data


• Export a Catalyst script with Catalyst→Generate Script (v5.5.2) or 
Catalyst→Define Exports and the Catalyst Export Inspector panel (v5.6.0).



Pipelines for ParaView 5.5.2

The following slides show how to create Python pipeline scripts using 
ParaView version 5.5.2, which is the version in the tutorial VM.



Creating a Python Pipeline

• Attach to Catalyst/Live or load 
an example dataset.


• Create a pipeline. Here we have 
averaged cell data to points, 
contoured, and sliced an 
example dataset.


• Then click "Catalyst→Generate 
Script".

1

2

3

1

2

3



Creating a Python Pipeline

• Choose the datasets from 
ParaView that will be provided 
by your simulation via SENSEI.


• Click "Add" for each dataset.


• Then click "Next".

1
1

2

3
2

3



Creating a Python Pipeline

• For each dataset from ParaView, 
set the "Simulation Name" used 
by SENSEI to identify that mesh. 
The names on the right should 
be mesh names from your data 
adaptor.


• Click "Next".
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Creating a Python Pipeline
• "Live Visualization" will create a 

script that attempts to connect 
to ParaView at each timestep.


• "Output rendering..." will create 
a script that saves image 
sequences.


• "Output to Cinema" will create a 
script that saves composable 
depth images.


• Set other options; click "Finish".

1

3

2

1

3

2

4

4

⦙  



Pipelines for ParaView 5.6.0

The following slides show how to create Python pipeline scripts using 
ParaView version 5.6.0, which is soon to be released and significantly 

different/improved.



Python Pipelines

• The Catalyst Export Inspector panel can 
save


• Data Extracts, which write filtered 
datasets using VTK's I/O libraries


• Image Extracts, which render filtered data 
and save image sequences or Cinema 
databases


• The Enable Live Connections checkbox tells 
Catalyst to look for ParaView client 
connections



Python Pipelines

• The Catalyst Export Inspector panel can 
save


• Data Extracts, which write filtered 
datasets using VTK's I/O libraries


• Image Extracts, which render filtered data 
and save image sequences or Cinema 
databases


• The Enable Live Connections checkbox tells 
Catalyst to look for ParaView client 
connections



Python Pipelines

• The Catalyst Export Inspector panel can 
save


• Data Extracts, which write filtered 
datasets using VTK's I/O libraries


• Image Extracts, which render filtered data 
and save image sequences or Cinema 
databases


• The Enable Live Connections checkbox tells 
Catalyst to look for ParaView client 
connections



Python Pipelines

• Now configure SENSEI to run the Catalyst Python pipeline with an XML 
configuration file for SENSEI's ConfigurableAnalysis:



Exercises 3 & 4

• Demo:

• Create a visualization of oscillator mini-app data

• Save a Catalyst script


• Exercise

• Configure the oscillator to use the Catalyst script

• Run the oscillator again using the flexible, run-time pipeline

cd ~/sensei_insitu/demos/sc18/pv_catalyst 
cd /project/projectdirs/m636/sensei_insitu/ 
    demos/sc18/pv_catalyst 
./demo 3 username 
./demo 4 username

On the VM

On Cori

On either



Live Connections
• With ParaView Live connections,


• Catalyst will check for a ParaView client connection request at the 
beginning of each timestep.


• If present, a TCP/IP connection between the client and simulation is 
used to bootstrap a connection between the simulation and 
ParaView's server (which may be running in parallel on the same or 
different nodes of the cluster).


• Datasets are transmitted upon demand (by the GUI client) from the 
simulation to the ParaView server, where they can be filtered and 
rendered in parallel.



Live Connections

• To enable ParaView Live, edit your Catalyst pipeline Python script; change 
this:


• to this:

# Enable Live-Visualization with ParaView and the update frequency 
coprocessor.EnableLiveVisualization(False, 1)

# Enable Live-Visualization with ParaView and the update frequency 
coprocessor.EnableLiveVisualization(True, 1)



Live Connections
• Before starting your simulation, 

run the ParaView client, connect 
to the remote server (if you want 
to perform parallel rendering), and 
tell ParaView to accept Catalyst 
connections.


• You may also want to pause 
Catalyst, which will halt the 
simulation when it connects so 
you have an opportunity to 
configure ParaView.



Live Connections
• Before starting your simulation, 

run the ParaView client, connect 
to the remote server (if you want 
to perform parallel rendering), and 
tell ParaView to accept Catalyst 
connections.


• You may also want to pause 
Catalyst, which will halt the 
simulation when it connects so 
you have an opportunity to 
configure ParaView.



Live Connections

• The builtin or cori server is data 
present on ParaView's server 
process(es).


• The catalyst "server" is data 
present in the simulation.


• Clicking on catalyst pipelines will 
transfer the data to ParaView's 
server process(es).

Simulation running
Simulation paused
Simulation running; breakpoint set



Demo / Exercises 5 & 6

• Demo:


• Edit a Catalyst script to enable Live connections


• Exercise


• Run ParaView and accept connections from Catalyst


• Run the oscillator and connect using ParaView Live

cd ~/sensei_insitu/demos/sc18/pv_catalyst 
./demo 5 username 
./demo 6 username

This only runs

on the VM



Getting Help

• User's Guide: http://www.paraview.org/paraview-guide


• Discourse Forum: https://discourse.paraview.org/


• Websites

• http://www.paraview.org/

• http://www.paraview.org/in-situ/

• http://www.cinemascience.org/

http://www.paraview.org/paraview-guide
https://discourse.paraview.org/
http://www.paraview.org/
http://www.paraview.org/in-situ/
http://www.cinemascience.org/


SENSEI In Situ Demonstrations
Integrating VTK-m and Cinema into SENSEI



Agenda
• Overview of VTK-m


• Requirements


• Instrumentation Examples


• Direct access


• vtkmlib from VTK


• Demo / Exercise



VTK-m
• VTK-m is a "m"any-core version of VTK that also integrates


• new C++ features not available in 1993.


• design changes based on the VTK community's experience.


• VTK-m is designed around worklets that evaluate a single point or cell.


• Algorithms in VTK-m are cross-compiled to run on Cuda and TBB.


• VTK-m datasets are structurally different than VTK data objects.



Requirements

• SENSEI is targeting the version of VTK-m that will ship with VTK 8.2.0.


• Since VTK 8.2.0 has not been released, the virtual machine for this tutorial 
comes with a build against a known-good version of VTK & VTK-m.



Instrumenting VTK-m
• Preferred: Use vtkmlib from VTK/Accelerators/Vtkm/vtkmlib


• Construct VTK datasets from VTK-m datasets without copying large 
arrays.


• Pass the resulting datasets to SENSEI's data adaptor.


• Direct access


• Simply create vtkDataArray subclasses that reference external memory.


• This is not recommended as it does not generalize.



Exercise: Haar wavelet

• The Haar wavelet basis is simple to compute; discarding the second set of 
coefficients halves the size of the dataset. Applying once along each 
coordinate axis cuts dataset size by 8.


• Applying the Haar and discarding part of its basis results in a low-spatial 
resolution dataset that is much smaller; it may serve as a global simulation 
summary over time, especially when combined with other techniques. 



Demo / Exercise

• Exercise


• Run the oscillator, saving out Haar-transform-
reduced datasets in Cinema format


• Visualize the resulting data in a web browser 
using arctic-viewer.

cd ~/sensei_insitu/demos/sc18/vtk-m 
./demo 1 username 
./demo 2 username

This only runs

on the VM



Instrumenting LAMMPS with SENSEI



LAMMPS

• Large-scale Atomic/Molecular Massively 
Parallel Simulator

• Classical molecular dynamics code
• Runs on single processors or in parallel using 

message-passing techniques and a spatial-
decomposition of the simulation domain

• Accelerated performance on CPUs, GPUs, 
and Intel Xeon Phis

• Distributed by Sandia National Laboratories

Figure 2: Bilinear interpolation. Red circles represent mea-
sured execution times. x-variable represents problem size. y-
variable represents the process count and network diameter in
case of computation and communication time interpolations re-
spectively.

the communication performance. We observed less than 8% predic-
tion error in communication time estimates. With regards to mem-
ory, the implementation of some analysis routines require a fixed
amount of memory independent of the problem size. Other analy-
sis routines allocate memory proportional to the problem size. We
use bilinear interpolation to determine the memory requirement us-
ing the problem size as the x-variable and the process count as the
y-variable. In absence of precise analytical model due to lack of
complete knowledge of the application, linear interpolation gives a
fairly accurate estimate as shown here by the low prediction errors,
and in earlier work [27]. Note that we can refine the performance
model and leverage the various performance counters and/or mod-
els present in different systems.

5. EXPERIMENTS AND RESULTS
We describe the experimental setup, the applications and the in-

situ analyses used in the evaluation, and present the efficacy of our
in-situ analyses scheduling in several typical usage scenarios.

5.1 Setup
We conduct our experiments on the IBM Blue Gene/Q Mira sys-

tem at Argonne National Laboratory. Mira is a 48-rack machine
with Power BQC 1.6 GHz processor cores. Each rack has 2 mid-
planes consisting of 512 compute nodes each. Each compute node
has 16 GB RAM. Mira has peak I/O bandwidth of 240 GB/s to the
GPFS file system.

5.2 Application Case Studies
We evaluate our optimization-based scheduling of in-situ anal-

yses using two applications. First, we performed our experiments
using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) classical molecular simulation code [23,33]. Two
LAMMPS problems were examined in order to best span a large
range of conditions explored in molecular simulations of liquids,
materials, and biological systems. The first problem investigated
is a box of water molecules solvating two types of ions. For this
problem, the number of atoms in the system was varied from 16
million to 400 million atoms. Table 2 lists the analyses investigated
for this problem. The set comprises of radial distribution functions
(RDF), the mean square displacements (MSD) of molecules/ions,
and velocity auto-correlation functions. Combined, these physical
observables provide key information on understanding the struc-
ture and dynamics of liquids and materials [5]. Additionally, their
respective algorithms (e.g. accumulating histograms, computing
time averages, evaluating correlation functions) are representative
of those employed in the calculation of a large class of physical
observables (e.g. dielectric constant and shear viscosity).

Table 2: Analyses for simulation of water and ions in LAMMPS
Analysis
Name

Analysis Description

hydronium
rdf (A1)

Compute hydronium-water,
hydronium-hydronium, and hydronium-ion RDFs
averaged over all molecules

ion rdf (A2) Compute ion-water and ion-ion RDFs averaged
over all molecules

vacf (A3) Compute velocity auto-correlation function for
the water-oxygen, hydronium-oxygen, and ion
atoms

msd (A4) Compute mean squared displacements averaged
over all hydronium and ions

The second LAMMPS problem explored in this work is the rhodopsin
protein benchmark, which consists of a protein embedded in a mem-
brane and solvated with water and ions [34]. For this problem, we
varied the number of atoms in the system from 16 million to 1 bil-
lion atoms. The set of analyses investigated for this problem are the
radius of gyration for a single protein and 2D histogram of density
profiles for the membrane and protein structures (listed in Table 3).
These properties provide insight into the distribution of particles
within an assembled structure and throughout the system. Just as
for the water+ions system, these analyses are commonly employed
in studies of aggregate structures and assemblies and are of interest
to a large community of researchers [5]. Figure 3 shows a snapshot

Figure 3: Snapshot of the LAMMPS rhodopsin benchmark
(32,000 atoms): protein (solid purple; center) is embedded in
membrane (translucent green; middle) and solvated with water
(translucent blue; top and bottom) and ions (orange spheres).

of the base LAMMPS rhodopsin benchmark (32,000 atoms) using
VMD [1]. The solid purple structure in the center is the protein. It
is embedded in membrane which is shown in translucent green in
the middle and solvated with water (shown in translucent blue at
the top and bottom) and ions (shown as orange spheres).

The second application used in our evaluation is the FLASH
multiphysics multiscale simulation code [13]. FLASH is an adap-
tive mesh, parallel hydrodynamics code developed to simulate high
energy density physics and astrophysical thermonuclear flashes in
two or three dimensions, such as Type Ia supernovae, Type I X-
ray bursts, and classical novae. It solves the compressible Euler
equations on a block-structured adaptive mesh. FLASH provides
an Adaptive Mesh Refinement (AMR) grid using a modified ver-
sion of the PARAMESH package [26] and a Uniform Grid (UG) to
store Eulerian data. For this study, we used the Sedov simulation

LAMMPS rhodopsin benchmark 
(32,000 atoms). 
Courtesy Malakar et al. "Optimal 
scheduling of in situ analysis for 
large-scale scientific simulations." 
SC 2015.http://lammps.sandia.gov/

http://lammps.sandia.gov/


Enabling in situ interactive visualization for large-scale 
molecular simulations

• LAMMPS is a good representative application of large scale molecular 
dynamics simulations

• We use LAMMPS as a library
– No need to recompile or instrument LAMMPS original code

• Drive LAMMPS from a simple application instrumented with SENSEI
• Integrate OSPRay (Intel Software-Defined visualization) as an additional 

SENSEI infrastructure for interactive visualization
• Use libIS as a lightweight in transit library

W.Usher, S. Rizzi, I. Wald, J. Amstutz, J. Insley, V. Vishwanath, N. Ferrier, M.E. Papka, V. Pascucci. 
libIS: A Lightweight Library for Flexible In Transit Visualization. ISAV 2018.



Data format

• LAMMPS particle format is basically x,y,z coordinates with additional 
fields like atom type or radius

• Add LAMMPS fix/external command in input file for LAMMPS to share 
pointers to its internal data after computing every timestep of the 
simulation

• Additional information here: Coupling LAMMPS to other codes
https://lammps.sandia.gov/doc/Howto_couple.html

https://lammps.sandia.gov/doc/Howto_couple.html


Ray tracer for interactive scientific visualization-style rendering
• Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,…)
• Ray traced shading effects for shadows, ambient occlusion
Free & open source: Apache 2.0 License
• http://ospray.org/

Built on top of Embree, extensive use of ISPC for vectorization
The MPIDistributedDevice provides a prototype distributed API for 

OSPRay, which includes a basic raycaster and a method for applications to 
express their data distribution for compositing

OSPRay

[Wald et al. ’15]

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. 
Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for 
Scientific Visualization." IEEE transactions on visualization and computer graphics 
23, no. 1 (2017): 931-940.

Slide courtesy the OSPRay team
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LAMMPS instrumentation with SENSEI and OSPRay

LAMMPS as a 
library

In transit. Two 
concurrent jobs

Viewer decoupled 
from renderer



Callback function from LAMMPS
(every timestep)
void LAMMPSCallback(void *ptr, bigint ntimestep,

int nlocal, int *id, double **x, double **f)
{

Info *info = (Info *) ptr;

// extents
double boxxlo = *((double *) lammps_extract_global(info->lmp,"boxxlo"));
double boxxhi = *((double *) lammps_extract_global(info->lmp,"boxxhi"));
double boxylo = *((double *) lammps_extract_global(info->lmp,"boxylo"));
double boxyhi = *((double *) lammps_extract_global(info->lmp,"boxyhi"));
double boxzlo = *((double *) lammps_extract_global(info->lmp,"boxzlo"));
double boxzhi = *((double *) lammps_extract_global(info->lmp,"boxzhi"));

// get pointer to atom types
int *type = (int *) lammps_extract_atom(info->lmp,"type");

// update SENSEI bridge
bridge::Set_data(nlocal, id, type, x, boxxlo, boxylo, boxzlo, boxxhi, boxyhi, boxzhi);

// visualize
bridge::Execute();    

}

XYZ atom coords
from LAMMPS

get atom types 
from LAMMPS

Update SENSEI 
bridgeVisualize



Materials Science with LAMMPS

• Massively-parallel classical molecular 
dynamics (MD) simulations with LAMMPS 

• Various temperature conditions

• Varying rates of silicene deposition

• Characterize material structure and growth

Simulations were run on Mira at Argonne
162,000 iridium atoms

~6 Million total compute hours

Silicene: Mono-layer Silicon / Iridium Substrate

Nanoscale
rsc.li/nanoscale

ISSN 2040-3372

 PAPER 
 Mathew J. Cherukara, Subramanian K. R. S. Sankaranarayanan  et al.  
 Silicene growth through island migration and coalescence 

Volume 9  Number 29  7 August 2017  Pages 10147–10512

Cherukara, Mathew J., Badri Narayanan, Henry Chan, and Subramanian Sankaranarayanan. 
"Silicene growth through island migration and coalescence." Nanoscale 9, no. 29 (2017)

Slide courtesy Joe Insley, 
Argonne National Laboratory



Live demo
§ Live demo on virtual machine

– Running LAMMPS coupled 
to OSPRay for interactive 
visualization

– Navigation: Use RIGHT 
click to zoom in/out, LEFT 
click to rotate

§ Steps:

Open a terminal
% cd ~/sensei_insitu/demos/sc18/lammps
% ./silicene-demo-sc18.sh



In Situ Costs and Performance 



What is the cost of in situ processing? 

Concern: simulations want to use all available resources, so having an 
understanding of in situ resource utilization is useful. 

In other words: In situ infrastructure must play nicely with simulation 

 

Full details in SC16 paper: Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque, 
Greg Eisenhauer, Nicola Ferrier, Junmin Gu, Kenneth E. Jansen, Burlen 
Loring, Zarija Lukic, Suresh Menon, Dmitriy Morozov, Patrick O’Leary, 
Rateesh Ranjan, Michel Rasquin, Christopher P. Stone, Venkat Vishwanath, 
Gunther H. Weber, Brad Whitlock, Matthew Wolf, K. John Wu, and E. Wes 
Bethel, Performance Analysis, Design Considerations, and Applications of 
Extreme-scale In Situ Infrastructures. In Proceedings of SC16, November 
2016. 

 



Shared resources 

•  Initialization costs need to be monitored 
– Static build options important as HPC simulation size increases 
–  Initialization costs do get amortized 

•  Finalization costs can be a factor for certain in situ algorithms 

•  Memory costs can be a factor 
– Shared memory usage for simulation and in situ arrays (“zero copy”) 
– Request only needed arrays through the DataAdaptor’s AddArray() method 
– Some analysis algorithms can require a lot of memory 
– Autocorrelation could potentially need to store full data at each time step. Use 

autocorrelation window size to reduce the amount of time steps stored 



In situ compute 

•  In situ computation may not need to be done every time step 
–  Lower fidelity time stepping output 
– Only when something “interesting” is happening 

•  Can still reduce output size 
–  Image output is fixed size and independent of simulation size 
– Coarsen data extracts 
– Compute summary statistics (e.g. autocorrelation, histogram) 



Three key performance analysis focus areas 

One-time costs: initialization 
•  Some in situ setups may entail non-zero 

initialization costs, e.g.: 
•  Per-rank config file processing 

One-time costs: finalization 
•  Some in situ setups may entail 

non-trivial initialization costs, 
e.g.: 

•  Global reductions 

•  Gives insights into ways to 
optimize 

Recurring costs 
•  Execution time: 

•  Different methods require differing 
amounts of computation 

•  Algorithmic complexity at scale 
•  In situ methods that use reductions 
•  In situ vs. in transit tradeoffs 

•  Memory consumption 
•  Temporal analysis methods must 

buffer more data 



Measuring the cost of in situ 

Two questions: 
How much overhead associated with use of in situ methods, 

infrastructure (runtime, memory)? 
Does this change with varying concurrency? 
 
Additionally: 
In situ and in transit configurations 
In situ and post hoc: end-to-end comparison 
 
 
 
 
 

U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E. Jansen, B. Loring, Z. 
Lukic, S. Menon, D. Morozov, P. O’Leary, R. Ranjan, M. Rasquin, C. P. Stone, V. Vishwanath, G. 
H. Weber, B. Whitlock, M. Wolf, K. Wu, and E. W. Bethel. Performance Analysis, Design 
Considerations, and Applications of Extreme-scale In Situ Infrastructures. In Proceedings of 
SC16, November 2016.  



Methodology for measuring cost of in situ 

Miniapplication: data source (next slide) 
In situ methods 

–  Histogram computation 
–  Autocorrelation computation (temporal analysis) 
–  Extract and render a 2D slice from a 3D volume 

In situ infrastructures 
–  VisIt/Libsim 
–  ParaView/Catalyst 
–  ADIOS 

Measure: 
•  Runtime and memory footprint 
•  At varying levels of concurrency 
•  One-time and recurring 

Test Platform 
Cori Phase I at NERSC 
Cray XC system 
1630 compute nodes 
Dual 2.3Ghz 16-core  Intel 
Haswell processors  
128GB RAM/node 
 
Concurrency levels of 
tests: 
812 (~1K)  
6496 (~6K) 
45440 (~45K) 



Miniapplication - oscillators 

Bulk-synchronous parallel computation 
of periodic, damped oscillators (MPI-
based app) 

No interprocess communication - 
entirely analytic, embarassingly 
parallel 

For m oscillators and per-rank grid size 
of N3: 

•  Per-rank memory footprint: 2N3 

•  Per-rank complexity: mN3  



Miniapp configurations – in situ methods 

Configuration Intention 

Original Miniapp with no SENSEI interface, no I/O. 
Direct-coupling (subroutine call) to analysis methods 
Measure runtime/memory with no in situ 

Baseline Miniapp with the SENSEI interface enabled 
No analysis or I/O 
Measure overhead of in situ interface in isolation 

Histogram Miniapp+SENSEI interface+histogram computation 
No in situ infrastructures 
Compare performance to Original, Baseline 

Autocorrelation Miniapp+SENSEI interface+autocorrelation computation 
No in situ infrastructures 
Compare performance to Original, Baseline 



Miniapp configurations – with in situ infrastructures 

Configuration Intention 

Catalyst-slice Miniapp + SENSEI interface + Catalyst 
Catalyst performs a 2D slice extraction of 3D volume 
Followed by parallel rendering, produces an image 
Compare to Original, Baseline 

Libsim-slice Miniapp + SENSEI interface + Libsim 
Libsim performs a 2D slice extraction of 3D volume 
Followed by parallel rendering, produces an image 
Compare to Original, Baseline 

ADIOS-FlexPath Miniapp + SENSEI interface + ADIOS/FlexPath 
In transit implementation of histogram, autocorrelation, 
Catalyst-slice 
Compare to Original, Baseline 



Measuring impact of SENSEI interface 

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K 
•  Original: miniapp + subroutine called autocorrelation 
•  Baseline: miniapp + SENSEI bridge to autocorrelation 

Compare runtime (left), memory footprint (right) 

No significant difference reflects zero-copy nature of the interface 
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Comparing in situ to post hoc 

Post hoc configuration 
•  Simulation computes something 
•  Then writes results to disk 
•  Post hoc method reads from disk 

and performs analysis  

In Situ configuration 
•  Simulation computes 

something 
•  Then in situ method 

computes something 
•  (No disk I/O involved) 

Post hoc study concurrency  
 Simulation Postprocess 

812 82 

6496 650 

45440 4545 

Weak-scaling Study 
•  Measure post hoc end-to-end cost 

•  Sim writes, post hoc reads, 
processing 

•  Compare to in situ configurations 
•  Also measure time-to-solution for 

100 timesteps 



Post hoc: cost of writes 

Baseline miniapp with the addition of 
parallel I/O 

•  VTK I/O, non-collective 
•  MPI-IO collective is slower (see 

the paper) 
•  This is not an I/O study. J We 

used the fastest I/O approach we 
could get our hands on.  

Weak-scaling: linear increase with 
problem size 

I/O cost is significant at high 
concurrency  

Cost of Writes 
Concurrency 1 step Aggregate 

812 2 GB, 0.12s 0.2 TB, 12s 

6496 16 GB, 0.67s 1.6 TB, 67s 

45440 123 GB. 9.05s 12.3 TB, 905s 



Post hoc: cost of reads + processing 
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In situ: time-to-solution 
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Post hoc vs. in situ time to solution 

Post hoc fixed costs (at 45K): about 1200s and 12.3 TB 
disk space  

Fewer ranks for analysis processing results in longer 
analysis runtime (in this 1:10 configuration, which is 
typical for post hoc use cases) 

Configuration (45K) In Situ Post hoc: sim + write + read + process 

Histogram ~40s ~1230s = ~25s + ~905s + ~300s + (a few secs) 

Autocorrelation ~225s ~2930s = ~25s + ~905s + ~300s + ~1700s 

Catalyst-slice ~80s ~1505s = ~25s + ~905s + ~300s + ~275s 



In situ at scale, Performance in the real world 



PHASTA: Computational Fluid Dynamics 

PHASTA from UC Boulder run on Mira@ANL  
•  Simulation of realistic geometry tail rudders and active flow 

control 
•  Coupled via SENSEI interface to Catalyst-slice, producing an 

output image 
–  Field data, nodal coordinates: zero copy 
–  Connectivity data: full copy 

•  Runs with 256K and 1M MPI ranks 
–  1M run was 4 times larger than any known in situ analysis run 
–  Key technologies include reduced library size, simplified output 

specification and static linking using IBM XL compilers for 
fastest run times 

–  In situ overhead: 8.2%, 33%, 13% 
•  The 33% traced to zlib/PNG compression on rank 0 



IAMR Rayleigh-Taylor Libsim 

Footer 19 

2048 Cores Cori Haswell 



IAMR Rayleigh-Taylor Catalyst 

Footer 20 

2048 Cores Cori Haswell 



Performance 

Footer 21 

2048 Cores Cori Haswell Data from rank with fastest single 
execute time 
Data from rank with fastest single 
execute time 

Data from rank with fastest single 
execute time 
Data from rank with median single 
execute time 

Data from rank with fastest single 
execute time 
Data from rank with slowest single 
execute time 

ParaView Catalyst VisIt Libsim 



Wrapping Up 



SC17 In Situ Tutorial Summary 

•  Why should you care about in situ? 
•  Flops >> I/O; in situ is a viable approach for coping with 

this problem 
•  What in situ infrastructures are available? 
•  What about interfacing my sim code to them? 
•  What are the performance issues to be thinking about? 

Footer 23 



Links 

•  Main page – http://www.sensei-insitu.org/ 

•  Software repo – https://gitlab.kitware.com/sensei/sensei 

•  ADIOS – https://www.olcf.ornl.gov/center-projects/adios/ 

•  VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim 

•  ParaView Catalyst – http://www.paraview.org/in-situ/ 

Footer 24 



Tutorial evaluation 

•  Was this tutorial useful to you? 

•  Were there any subjects you’d like to see covered? 
•  More of some? 
•  Less of others? 

•  Please provide SC17 with tutorial feedback 
•  https://submissions.supercomputing.org/eval.html 

•  Also, can provide feedback to us at:  
•  Andy Bauer: andy.bauer@kitware.com 
•  Wes Bethel: ewbethel@lbl.gov 

Footer 25 



Conclusions and future work 

Write once, use everywhere 

Easy to add new analysis/frameworks 

Understanding data transformation costs 

Data Model: supporting arbitrary layouts for connectivity 

Bigger runs – current best is 1Mi MPI processes on Mira@ALCF 

More examples, tutorials, improved docs, etc. 
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