
SC18 In Situ Analysis and
Visualization with SENSEI

E. Wes Bethel, Junmin Gu, Burlen Loring, Dmitriy Morozov, Gunther H. Weber,

John Wu (LBNL). Nicola Ferrier, Silvio Rizzi (ANL). Dave Pugmire, James Cress,
Matthew Wolf (ORNL). Earl Duque, Brad Whitlock (Intelligent Light). Utkarsh

Ayachit, David Thompson, Andrew Bauer, Patrick O’Leary (Kitware)

Tutorial VM & web-site

The latest slides and VM can be obtained from after 5pm on Friday Nov

• www.sensei-insitu.org/tutorials/sc18.html

At the tutorial

• USB drive available which contains:
• All demos shown here
• A pdf of the slides for reference

• Includes hidden slides with more details not covered here due to time
restrictions

http://www.sensei-insitu.org/tutorials/sc18.html

Outline
• Introduction to In Situ Analysis and Visualization

• SENSEI In Situ Data Interface

• Instrumenting data sources and endpoints (C++)

• SENSEI In Situ Demonstrations with Coupled Infrastructures
– Data extracts with Libsim
– Computational monitoring with ParaView Catalyst
– Autocorrelation with ADIOS
– Using SENSEI via Python

• In Situ Costs and Performance
• Closing thoughts

Setting up the VM

VirtualBox

• Download VirtualBox

• & VirtualBox extensions

• Update Guest additions
in theVM, if your
VirtualBox is not 5.2.16

Import Appliance

• File->Import appliance

• locate sensei-sc18.ova

Import Appliance

• Check reinitialize mac
address

Start the VM

• Start the VM

• Change network settings

• VirtualBox default should
work

VM Layout

~/sensei_insitu/software	

• ADIOS, ParaView, VisIt, VTK, SENSEI installs

• Use modules to select a SENSEI install. sensei/<version>-<backend>
– $	module	load	sensei/2.1.1-libsim	

~/sensei_insitu/demos/sc18	

• demo codes and SENSEI miniapps used in the tutorial

VM access:
sensei
sc18_password

Getting started on cori

Demos on cori

• take an account, copy user name & password, cross it off the list and pass list
on.

• fill out user agreement, turn them in before the break

• log in
– 	ssh	–X	<user	name>@cori.nersc.gov	

• demos need to be run from scratch file system
– cd	$SCRATCH	

– ln	–s	/project/projectdirs/m636/sensei_insitu	$SCRATCH

Starting jobs on cori

We have 40 nodes, one per account. to use the reservation add
--reservation=SC18_SENSEI	

to salloc command

Introduction to in situ analysis

Welcome! Why are we here?

Problem: FLOPS >> I/O, potential for lost
science

Approach: do as much processing as
possible while data still resident in
memory?

Why This Tutorial? To inform you of
issues involved, to show you what
technologies are available and how to
use them.

What are the problems?

Not enough I/O capacity on current HPC systems, and
the trend is getting worse.

If there’s not enough I/O, you can’t write data to storage,
so you can’t analyze it: lost science.

Energy consumption: it costs a lot of power to write data
to disk.

Opportunity for doing better science (analysis) when
have access to full spatiotemporal resolution data.

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Image courtesy Ken Moreland

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

O(2)

Image courtesy Ken Moreland

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

Node memory
4.5 PB/s

O(2)

Image courtesy Ken Moreland

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

Node memory
4.5 PB/s

Interconnect
24 TB/s

O(2)

O(2)

Image courtesy Ken Moreland

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

Node memory
4.5 PB/s

Interconnect
24 TB/s

Interconnect
24 TB/s

O(2)

O(2)

Image courtesy Ken Moreland

Five orders of magnitude between compute and I/O
capacity on Titan Cray system at ORNL

Computation
125 PB/s

Node memory
4.5 PB/s

Node memory
4.5 PB/s

Interconnect
24 TB/s

Storage
1.4 TB/s

Interconnect
24 TB/s

O(2)

O(2)

O(1)

Image courtesy Ken Moreland

Trends in recent HPC systems

A real example

What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis
program reads that data and operates on it.

What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis
program reads that data and operates on it.

• In situ processing: process data as it produced without writing to
and reading from storage. Processed “in place”.

What is in situ data analysis and visualization?

• Post processing: save to disk, then later, a separate analysis/vis
program reads that data and operates on it.

• In situ processing: process data as it produced without writing to
and reading from storage. Processed “in place”.
– Many flavors/terms: tightly coupled, loosely coupled, in transit, co-processing, etc.
– Practical view: anything processed but not written to persistent storage is in situ

Generic processing sequence

1. initialize	sim	

2. do	

3. 		compute	new	state	

4. 		if	do_io	write	plot	file	

5. while	!done	

6. finalize	sim

Generic processing sequence w/ in situ

1. initialize	sim	

2. if	do_insitu	initialize	in	situ	
3. do	

4. 		compute	new	state	

5. 		if	do_io	write	plot	file	

6. 		if	do_insitu	execute	in	situ	
7. while	!done	

8. if	do_insitu	finalize	insitu	
9. finalize	sim

Generic processing sequence w/ in situ

1. initialize	sim	

2. if	do_insitu	initialize	in	situ	
3. do	

4. 		compute	new	state	

5. 		if	do_io	write	plot	file	

6. 		if	do_insitu	execute	in	situ	
7. while	!done	

8. if	do_insitu	finalize	insitu	
9. finalize	sim

execute is where things get
interesting

• shared address space zero
copy data transfers to shared
or unique compute resources

• staging transfer sends data to
a de-coupled parallel job,
potentially asynchronous,
potentially different jobs size

In situ vs In transit

In situ vs In transit

Simulation Cores
In Situ/In Transit Cores

In situ – no data
movement:

Simulation and in
situ methods

share memory

In situ vs In transit

Simulation Cores
In Situ/In Transit Cores

In situ – no data
movement:

Simulation and in
situ methods

share memory

In transit – data
is moved:
Simulation and
in situ methods
do not share
memory

The story is much more interesting than “in situ” vs. “in
transit”

In situ vs. in transit is an
oversimplification of a much richer
problem space

The “In Situ Terminology Project”
• A community effort (>50 participants)
• Identify “basis vectors” for describing

aspects of in situ processing
– Integration Type, Proximity, Access,

Division of Execution, Operation
Controls, Output Type

Co-processingIn Transit

In Situ

In Situ

In situ: an ”umbrella definition”

In situ is term that covers a lot of
territory:

In Situ Terminology project:
http://ix.cs.uoregon.edu/~hank/insituterminology/
Community effort to identify basis vectors and name them.

In situ has been around a long time: ancient history
E. Zajac, CACM 7(3), Mar 1964.

Direct-to-film process (simulation, calligraphic
display exposes film) movie of a satellite
orbiting a planet.

Is this in situ?
• Yes: no data ever landed on disk.

Why did he do it?
• “Standard practice” for that era, and many

years that followed: direct-to-media more
efficient.

Link to movie page

The 1990s: the golden era of coprocessing
Main idea: systems/methods that support

interactive computation, computational
monitoring and steering.

Packages from this era (partial list):
• pV3: custom distributed memory code

(Haimes)
• AVS: co-routine processing (serial, mostly)
• CUMULVS: distributed memory M-to-N

visualization, steering (based on PVM)
(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling
a multi-phase reservoir simulator with AVS.

The 1990s: the golden era of coprocessing
Main idea: systems/methods that support

interactive computation, computational
monitoring and steering.

Packages from this era (partial list):
• pV3: custom distributed memory code

(Haimes)
• AVS: co-routine processing (serial, mostly)
• CUMULVS: distributed memory M-to-N

visualization, steering (based on PVM)
(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling
a multi-phase reservoir simulator with AVS.

The 1990s: the golden era of coprocessing
Main idea: systems/methods that support

interactive computation, computational
monitoring and steering.

Packages from this era (partial list):
• pV3: custom distributed memory code

(Haimes)
• AVS: co-routine processing (serial, mostly)
• CUMULVS: distributed memory M-to-N

visualization, steering (based on PVM)
(Kohl, et al.)

Bethel and Jacobsen (1994, 1995). Coupling
a multi-phase reservoir simulator with AVS.

Common design patterns of 1990s

Rank 0 Rank N…

Client

GUI

Many-to-one: AVS

Common design patterns of 1990s

Rank 0 Rank N…

Client

GUI

Many-to-one: AVS

Rank 0 Rank N…

GUI

Rank 0 Rank N

Client

“Tightly coupled”: pV3,
custom projects

Common design patterns of 1990s

Rank 0 Rank N…

Client

GUI

Many-to-one: AVS

Rank 0 Rank N…

GUI

Rank 0 Rank N

Client

“Tightly coupled”: pV3,
custom projects

Rank 0 Rank N…

GUI

Rank 0 Rank M

Client

“Loosely coupled”, M-to-
N: CUMULVS

…

Computational steering – human in the loop
Main idea: rapid convergence

Example: protein structure prediction, find
optimal-energy conformation from initial
conditions (NP-hard problem)

Approach:
• parallel computations that minimize

energy for individual conformations
• User can examine any of these, perform

manual tweaks to get “unstuck” from local
minimum, then resume calculations. O. Kreylos, N. Max, B. Hamann, S.

Crivelli, W. Bethel. Interactive Protein
Manipulation. IEEE Vis 2003, Best
Application Paper award.

Integrated computational environments
• Simplify building, running

codes
• Many add-on capabilities for

vis, analysis, debugging, data
I/O, etc.

Examples: SCIRun, Cactus
Application (sample): parallel

binary black hole merger
computation, in transit vis
wins SC Bandwidth
Challenge (2000, 2001, 2002)

!X

Resources used in SC 2002 Bandwidth
Challenge, in transit workflow

Explorable extracts
Basic ideas:
• Overcome in situ primary weakness: know before

you go.
• Use in situ computation to produce reduced-size

datasets, e.g., images, data subsets, “extracts”
like collections of features, etc.

• These “data extracts” are much smaller in size
compared to doing full resolution data I/O.

• Use some post-processing tool to view/analyze/
interact with these extracts.

Climate modeling example using Catalyst and
Cinema in our STAR paper. Chen et al., Interactive, Internet Delivery of Visualization

via Structured, Prerendered Multiresolution Imagery.
TVCG 14(2), 2008.

Bauer, et al., In Situ Methods, Infrastructures, and Applications on HPC Platforms, a
State-of-the-Art (STAR) Report, Computer Graphics Forum, 35(3), 2016.

In situ projects over the years (approximate, partial)

1964: Zajac, direct-to-film animations
1990s: Code coupling, computational steering:
 AVS
 pV3
 CUMULVS
2000s (early): Integrated Computational

Environments:
 SCIRun
 CACTUS

2000s (late): Computing Extracts for Post Hoc
Use

 Multiresolution, precomputed images
 Topology
 Geometry
Present day:
 VisIt/Libsim, Paraview/Catalyst: scalable

vis infrastructure accessible in situ
 ADIOS: I/O library approach
 SENSEI: generic in situ interface
 Other nascent efforts

Roadmap of In Situ Software Infrastructure for Today

SENSEI Generic In Situ Interface

ADIOS Miniapp from
SENSEI software collection

Sim codes:
LAMMPS

ADIOS ParaView/
Catalyst

VisIt/
Libsim

OSPray

VTK-mPython

SENSEI System Overview

In situ infrastructures
Relatively new. Until recently, ad hoc, proof-of-concept prototypes. However, several production

quality in situ infrastructures have emerged

ADIOS provides tools for in situ I/O , data movement and analysis

•  ADIOS allows simulations to adopt in situ techniques by leveraging their advanced I/O
infrastructures that enable co-analysis pipelines rather than changing the simulator.

•  The non-intrusive integration provides resilience to third party library bugs and possible jitter in the
simulation.

ParaView and VisIt both provide tools for in situ analysis and visualization
•  Can be tightly or loosely linked to a simulation, allowing the simulation to share data with Catalyst

for analysis and visualization.

•  Catalyst, Libsim, and ADIOS enable the opposite flow of information, sending data from the client
to the simulation, enabling the possibility of in situ and/or monitoring/simulation steering.

Ascent an emerging in situ framework with an elegant data model, taking advantage of emerging
VTK-m many core analysis and rendering capabilities

Can WE….

Enable use of any in situ framework?

Enable use of any analysis library/tool, even those not designed for in situ?

Develop analysis routines that are portable between codes?

Make it easy to use?

The original problem set

Libsim
www.olcf.ornl.gov/center-projects/adios
wci.llnl.gov/simulation/computer-codes/visit
www.paraview.org/in-situ

The current problem set

SENSEI seamlessly & efficiently enables in situ data processing with a
diverse set of tools & libraries

Our approach

Data model
•  The lingua franca allowing an analyses to access

simulation data consistently across a variety of
simulations

Data adaptor
•  Convert simulation data to/from the data model
•  API for accessing the simulation data from the backend
Analysis adaptor
•  Present the back-end data consumer to the simulation
•  API for pushing data through the system from the sim
Library
•  Providing off the shelf access to a diverse set of back-

ends. eg Libsim, Catalyst, and ADIOS capabilities

Write once run everywhere

The SENSEI API enables connection of simulation data sources to
visualization and analysis back ends

•  From the perspective of the simulation, the back ends(analysis/vis codes)
are interchangeable

The SENSEI data model enables viz & analysis codes to access data through
a unified API.

•  From the perspective of the analysis/visualization code, data
sources(simulations) are interchangeable

In situ Architecture

Footer 9

bridge code

Configurable
analysis
adaptor

Lisbim
adaptor

ADIOS
adaptor

Python
adaptor AMReX

simulation
AMReX data

adaptor

Catalyst
adaptor

Yt adaptor

VTK-m
adaptor

“write once, run everywhere”

SENSEI’s data adaptor
API and data model

expose simulation data
structures to the analysis

back-end

SENSEI’s analysis
adaptors provide the
API for simulations
to execute analyses

Ascent
adaptor

C++ Prog.
adaptor

Bridge code manages the adaptors
and periodically pushes data
through for analysis. Initialize,

Finalize, Execute

XML selects one
of these at runtime

Use w/ VisIt

Footer 10

bridge code

Configurable
analysis
adaptor

Lisbim
adaptor

ADIOS
adaptor

Python
adaptor AMReX

simulation
AMReX data

adaptor

Catalyst
adaptor

Yt adaptor

VTK-m
adaptor

Ascent
adaptor

C++ Prog.
adaptor

<sensei>	
		<!--	libsim		-->	
		<analysis	type="libsim"	frequency="1"	mode="batch"	
								session="rt_sensei_configs/rt_contour.session"	
								image-filename="rt_contour_%ts"	image-width="1555"	
								image-height="815"	image-format="png"	/>	
</sensei>	

SENSEI XML config file activates
the VisIt Libsim Adaptor

Session file created in VisIt GUI configures VisIt

IAMR Rayleigh-Taylor Libsim

Footer 11

2048 Cores Cori Haswell

<sensei>	
		<!--	catalyst	-->	
		<analysis	type="catalyst"	pipeline="pythonscript”	
		filename="rt_sensei_configs/rt_contour.py"	/>	
</sensei>	

Use w/ ParaView Catalyst

Footer 12

bridge code

Configurable
analysis
adaptor

Lisbim
adaptor

ADIOS
adaptor

Python
adaptor AMReX

simulation
AMReX data

adaptor

Catalyst
adaptor

Yt adaptor

VTK-m
adaptor

Ascent
adaptor

C++ Prog.
adaptor

SENSEI XML config file activates
the ParaView Catalyst Adaptor

Catalyst python script created in ParaView GUI configures Catalyst

IAMR Rayleigh-Taylor Catalyst

Footer 13

2048 Cores Cori Haswell

SENSEI API’s

DataAdaptor API

bridge

data
adaptor

analysis
adaptor

simulation analysis

bridge

data
adaptor

analysis
adaptor

simulation analysis

DataAdaptor API

•  Provides the API through which data is accessed
•  Converts simulation data structures into VTK data structures on demand
•  Is used by the analysis adaptor to access simulation data on demand

data
adaptor

DataAdaptor API
		///	@breif	Gets	the	number	of	meshes	a	simulation	can	provide	
		virtual	int	GetNumberOfMeshes(unsigned	int	&numMeshes)	=	0;	

	
		///	@breif	Get	the	name	of	the	i'th	mesh	

		virtual	int	GetMeshName(unsigned	int	id,	std::string	&meshName)	=	0;	

	
		///	@breif	get	a	list	of	all	mesh	names	

		virtual	int	GetMeshNames(std::vector<std::string>	&meshNames);	
	

		///	@brief	Return	the	data	object	with	appropriate	structure.	
		virtual	int	GetMesh(const	std::string	&meshName,	bool	structureOnly,	

				vtkDataObject	*&mesh)	=	0;	

	
		///	@brief	Adds	the	specified	field	array	to	the	mesh.	

		virtual	int	AddArray(vtkDataObject*	mesh,	const	std::string	&meshName,	

				int	association,	const	std::string	&arrayName)	=	0;	
	

		///	@brief	Return	the	number	of	field	arrays	available.	
		virtual	int	GetNumberOfArrays(const	std::string	&meshName,	int	association,	

				unsigned	int	&numberOfArrays)	=	0;	

	
		///	@brief	Return	the	name	for	a	field	array.	

		virtual	int	GetArrayName(const	std::string	&meshName,	int	association,	
				unsigned	int	index,	std::string	&arrayName)	=	0;	

	

		///	@brief	Release	data	allocated	for	the	current	timestep.	
		virtual	int	ReleaseData()	=	0;	

AnalysisAdaptor API

bridge

data
adaptor

analysis
adaptor

simulation analysis

bridge

data
adaptor

analysis
adaptor

simulation analysis

AnalysisAdaptor API

•  Provides the API for driving the analysis

•  Invoked by the bridge from the simulation when it is time for analysis

•  A DataAdaptor instance is passed, which the analysis code uses to access
simulation data structures

analysis
adaptor

AnalysisAdaptor API

///	@brief	AnalysisAdaptor	is	an	abstract	base	class	that	defines	
///	the	analysis	interface.	

class	AnalysisAdaptor	:	public	vtkObjectBase	
{	

public:	

	///	@brief	Execute	the	analysis	routine.	
	virtual	int	Execute(DataAdaptor*	data)	=	0;	

	
				///	@breif	Finalize	the	analyis	routine	

				virtual	int	Finalize()	=	0;	

};	

bridge

data
adaptor

analysis
adaptor

simulation analysis

Bridge API

•  Is part of the simulation code
•  Is where you create, initialize, and manage your data and analysis adaptors
•  Is where you execute the analyses adaptors as needed
•  Typically consists of 3 functions: Initialize, Compute and Finalize

Simulation loop with bridge code

Footer 22

1.  initialize	sim	
2.  if	do_insitu	bridge::initialize	
3.  do	
4.  		compute	new	state	
5.  		if	do_io	write	plot	file	
6.  		if	do_insitu	bridge::execute	
7.  while	!done	
8.  if	do_insitu	bridge::finalize	
9.  finalize	sim	

Run time configuration

Adaptors
•  SENSEI Configurable analysis. Parses XML and creates and configures one of the other analysis

adaptors interfacing to the back-ends (Libsim, Catalyst, ADIOS, custom, etc).

•  Direct integration

Back-ends
•  May expose control API via their SENSEI adaptor. In the Configurable analysis adaptor these are

exposed via XML attributes.

•  May be scriptable via their own Python bindings adding another layer of control.

•  May be configured via "state" or "session" files.

•  Special purpose

Footer 23

ConfigurableAnalysisAdaptor

•  a meta analysis. a manager. it configures and invokes one or more of the
other analysis adaptors

•  XML specifies analyses and their run time options

•  Supports ADIOS, Catalyst, Libsim, VTK I/O, and other data consumers

•  In in transit use cases one XML configures the transport a second configures
the analysis/backend

ConfigurableAnalysis XML

<sensei>	
		<!--	Custom	Analyses	-->	
		<analysis	type="histogram"	mesh="bodies"	array="v"	association="point"	
				bins="10"	enabled="0"	/>	
	
		<!--	VTK	XMLP	I/O	-->	
		<analysis	type="PosthocIO"	mode="paraview"	output_dir="./"	enabled="0">	
				<mesh	name="bodies">	
								<point_arrays>	ids,	m,	v,	f	</point_arrays>	
				</mesh>	
		</analysis>	
	
		<!--	CATALYST	-->	
		<analysis	type="catalyst"	pipeline="pythonscript"	
				filename="../sensei/miniapps/newton/newton_catalyst.py"	enabled="1"	/>	
	
		<!--	LIBSIM	-->	
		<analysis	type="libsim"	plots="Pseudocolor"	plotvars="ids"	
				image-filename="newton_%ts"	image-width="800"	image-height="800"	
				slice-project="1"	image-format="png"	enabled="0"/>	
</sensei>

Footer 25

SENSEI Data Model

Data model roles

Challenges
•  large bodies of existing codes with purpose specific non standard data

models can’t talk to each other
•  data needs are diverse
Solutions
•  Agreement between simulation and analysis on a data model enables the

exchange of data
•  Normalization of data model enables a generic solution

data model

simulation analysis analysis analysis

What simulation data types does SENSEI support?

Footer 28

•  many more purpose specific and
esoteric data types are supported by
VTK

•  SENSEI has no explicit dependence
on other parts of VTK such as i/o,
filters, renderering, etc etc

vtkDataObject

Uniform Cartesian

Stretched Cartesian

Curvilinear (logically Cartesian)

Unstructured/FEM

Molecular

Tabular

Graphs

Multi-"block"

AMR

Array Collection (no geometry)

PIC/Point cloud

www.vtk.org

vtkDataObject � The key to passing data in SENSEI

Footer 29

https://www.vtk.org/doc/nightly/html/classvtkDataObject.html

•  You can pass any of these
classes derived from
vtkDataObject through the
SENSEI API

•  Go to the link below. use the
clickable class diagram to
navigate / access
documentation for the specific
data object types

Distributed mesh based data in VTK

Composite Data
•  Tree based data structures
•  Think of as multi-block, blocks need not be

Cartesian or rectangular
•  Supports many blocks per rank
•  Provides iterators to walk over local blocks
•  Limited info about off rank blocks
Legacy Approach
•  Each rank has a single instance of vtkDataSet,

metadata identifies "piece” for unstructured,
“extents” for Cartesian

Footer 30

MPI
rank 0

MPI
rank 1

vtkDataSet 0

vtkCompositeDataSet

vtkDataSet 1

null

null

vtkCompositeDataSet � Container for distributed data

Footer 31

https://www.vtk.org/doc/nightly/html/classvtkCompositeDataSet.html

•  Go to the above link. use the clickable class diagram to navigate / access
documentation for the specific composite data object types

•  Use vtkCompositeDataIterator::NewIterator() to get an iterator that can visit
local blocks

vtkCompositeDataIterator API

	//	If	SkipEmptyNodes	is	true,	then	nullptr(non-local)	datasets	will	be	skipped.		
void	SetSkipEmptyNodes	(vtkTypeBool);	
	
//	Begin	iterating	over	the	composite	dataset	structure.		
void	InitTraversal	();	

	
	//	Begin	iterating	over	the	composite	dataset	structure.		
void	GoToFirstItem();	
	
//	Move	the	iterator	to	the	next	item	in	the	collection.	
void	GoToNextItem();	

	
//Test	whether	the	iterator	is	finished	with	the	traversal.		
int	IsDoneWithTraversal();	
	
//	Returns	the	current	item.						

vtkDataObject	*GetCurrentDataObject();	
	
//	Flat	index	is	an	index	to	identify	the	data	in	a	composite	data	set			
unsigned	int	GetCurrentFlatIndex();	

Footer 32

vtkDataSet � Leaves of the tree / legacy model

Footer 33

https://www.vtk.org/doc/nightly/html/classvtkDataSet.html

vtkImageData vtkPolyData vtkStructuredGrid vtkUnstructuredGrid vtkRectilinearGrid

VTK’s take on mesh based data

•  Either point or cell centered, or no centering
at all

–  vtkPointData � a collection of point
centered arrays. Must have number of
points elements

–  vtkCellData � a collection of cell centered
arrays. Must have number of cells elements

–  vtkFieldData � a collection of arrays with
no centering. Can be any lengtth

•  Mesh/block dimensions are in units of points

Footer 34

Point data

Cell data

https://www.vtk.org/doc/nightly/html/classvtkDataSetAttributes.html

vtkDataArray � passing simulation data

•  vtkFloatArray, vtkDoubleArray, vtkIntArray, etc are a façade
hiding templates vtkAOSDataArrayTemplate<ValueTypeT>	

•  VTK’s AOS type is the default for all arrays in VTK

•  Supports zero copy, can take ownership of a pointer & free/delete when
finished see XX::SetArray	API

•  Supports zero copy from alternative layouts, these are derived from
vtkGenericDataArray<DerivedT,	ValueTypeT>	

–  eg SOA vtkSOADataArrayTemplate<ValueTypeT>	

Footer 35

vtkDataArray � accessing data for analysis

•  Supports accessing stored data via pointer	
–  Avoid XX::GetVoidPointer, this may make a deep copy if the layout

is not VTK’s default layout
–  Downcast to SOA or AOS type,

vtkAOSDataArrayTemplate<ValueTypeT> or
vtkSOADataArrayTemplate<ValueTypeT> and used typed API
XX::GetPointer

–  If down casting fails, for instance a new layout is added, fall back to
XX::GetVoidPointer	

•  Or use VTK’s API for accessing tuples/values, these often are OK given
modern optimizing compilers	

Footer 36

zero copy layouts provide pointer equivalent performance
•  Array of Structures (AOS)
―  single array with components interleaved

•  Structure of Arrays (SOA)
―  each component in its own arrays

Speed & Efficiency

Footer 37

x1	y1	z1	 …	x2	y2	z2	 xn	yn	zn	v=	

x1	x2	x3	 …	 xn	vx=	

y1	y2	y3	 …	 yn	vy=	

z1	z2	z3	 …	 zn	vz=	

//	use	the	new	SOA	class	
vtkSOADataArrayTemplate<double>	*soa	=	
			vtkSOADataArrayTemplate<double>::New();	
soa->SetNumberOfComponents(3);	
soa->SetArray(0,	vx,	n,	true);	

soa->SetArray(1,	vy,	n);	
soa->SetArray(2,	vz,	n);	

//	VTK's	default	is	AOS,	no	need	to	use	
vtkAOSDataArrayTemplate	
vtkDoubleArray	*aos	=	vtkDoubleArray::New();	
aos->SetNumberOfComponents(3);	
aos->SetArray(v,	3*n,	0);	

Zero copy to VTK Arrays

Memory Layouts in VTK

•  Array of Structures (AOS)
―  Vectors/Tensors are a single array with components interleaved

•  Structure of Arrays (SOA)
―  Each vector/tensor component in its own arrays

Footer 38

x1	y1	z1	 	…	x2	y2	z2	 xn	yn	zn	v=	

x1	x2	x3	…		xn	

y1	y2	y3	…		yn	

z1	z2	z3	…		zn	

vx=	

vy=	

vz=	

Zero copy with AOS (Array of Structures)

//	VTK's	default	is	AOS,	no	need	to	use	vtkAOSDataArrayTemplate	
vtkDoubleArray	*aos	=	vtkDoubleArray::New();	
aos->SetNumberOfComponents(3);	

aos->SetArray(v,	3*nxy,	0);	
aos->SetName("aos");	

	
//	add	the	array	as	usual	
im->GetPointData()->AddArray(aos);	

im->GetPointData()->SetActiveVectors("aos");	
	

//	give	up	our	reference	
aos->Delete();

Footer 39

x1	y1	z1	 	…	x2	y2	z2	 xn	yn	zn	v=	

Zero copy with SOA (structure of arrays)

//	use	the	SOA	class	
vtkSOADataArrayTemplate<double>	*soa	=	vtkSOADataArrayTemplate<double>::New();	
soa->SetNumberOfComponents(3);	

soa->SetArray(0,	vx,	nxy,	true);	
soa->SetArray(1,	vy,	nxy);	

soa->SetArray(2,	vz,	nxy);	
soa->SetName("soa");	
	

//	add	to	the	image	as	usual	
im->GetPointData()->AddArray(soa);	

im->GetPointData()->SetActiveVectors("soa");	
	
//	git	rid	of	our	reference	

soa->Delete();

Footer 40

x1	x2	x3	…		xn	

y1	y2	y3	…		yn	

z1	z2	z3	…		zn	

vx=	

vy=	

vz=	

Overhead due to VTK data model

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K
•  Original: subroutine called, Baseline: through SENSEI bridge

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
rig

in
al
	

SE
N
SE
I	

Au
to
co
rr
el
a;

on
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation
M
ax
	V
m
HW

M
	in
	M

Bs

Performance Analysis, Design Considerations, and Applications of Extreme-scale In Situ Infrastructures. SC16

run time memory use

Zero copy demo

This demo shows how to do zero copy using AOS
and SOA layouts

Zero-copy passes a vector field to the VTK stream
line tracer

Vector field is tangent to concentric circles on a
domain of -1 to 1 in x and y

Running the demo
$	cd	~/sensei_insitu/demos/sc18/zero_copy	
$	vim	zero_copy.cpp	#	view	source	code	(optional)		
$./zero_copy.sh	

Footer 42

Instrumenting Data Sources and
Endpoints with SENSEI

Instrumentation tasks

1. Data
– Decide if you can use sensei::VTKDataAdaptor
– Or write an adaptor derived from sensei::DataAdaptor

2. Analysis
– Decide if you can use existing analyses: Libsim, Catalyst, Adios, etc
– And/Or implement new analyses derived from sensei::AnalysisAdaptor

3. Bridge
– Implement Initialize, Compute, and Finalize methods/functions
– Instrument the simulation to call the bridge code at the right times

Oscillator miniapp overview

• MPI based C++ code that simulates a
collection of periodic, damped, or decaying
oscillators over a Cartesian grid.

• Unstructured grid also supported
• Each oscillator is convolved with a Gaussian of a prescribed

width

• Can randomly place particles and advect them using an
analytical velocity field

• Executable inputs are oscillator parameters, time resolution,
length of the simulation, grid dimensions, grid partitioning,
and number of random particles to generate

Instrumenting the oscillator mini-app to use SENSEI

• Create a class that derives from sensei::DataAdaptor and implements:

– virtual int GetNumberOfMeshes(unsigned int &numMeshes) = 0;

– virtual int GetMeshName(unsigned int id, std::string &meshName) = 0;

– virtual int GetMesh(const std::string &meshName, bool structureOnly, vtkDataObject *&mesh) = 0;

– virtual int GetNumberOfArrays(const std::string &meshName, int association, unsigned int
&numberOfArrays) = 0;

– virtual int GetArrayName(const std::string &meshName, int association, unsigned int index,
std::string &arrayName) = 0;

– virtual int AddArray(vtkDataObject* mesh, const std::string &meshName, int association, const
std::string &arrayName) = 0;

– virtual int ReleaseData() = 0;

Creating the VTK grid – GetMesh() method
int DataAdaptor::GetMesh(const std::string &meshName, bool structureOnly, vtkDataObject *&mesh)
{

if (meshName != "mesh" && meshName != "ucdmesh" && meshName != "particles")
{

SENSEI_ERROR("the miniapp provides meshes named \"mesh\", \"ucdmesh\", and \"particles\""
" you requested \"" << meshName << "\"")

return -1;
}

DInternals& internals = (*this->Internals);

if (meshName == "ucdmesh")
{

.....
}
else if (meshName == "mesh")
{

if (!internals.Mesh)
{

internals.Mesh = vtkSmartPointer<vtkMultiBlockDataSet>::New();
internals.Mesh->SetNumberOfBlocks(static_cast<unsigned int>(internals.CellExtents.size()));
for (size_t cc=0; cc < internals.CellExtents.size(); ++cc)

internals.Mesh->SetBlock(static_cast<unsigned int>(cc), this->GetBlockMesh(cc));
}
mesh = internals.Mesh;

}
else if (meshName == "particles")
{

....
}
return 0;

}

Creating the VTK cell data – AddArray() method
int DataAdaptor::AddArray(vtkDataObject* mesh, const std::string &meshName, int association, const std::string &arrayName)
{

DInternals& internals = (*this->Internals);
vtkMultiBlockDataSet* md = vtkMultiBlockDataSet::SafeDownCast(mesh);

if ((meshName == "mesh" || meshName == "ucdmesh") && arrayName == "data" &&
association == vtkDataObject::FIELD_ASSOCIATION_CELLS)

{
for (unsigned int cc=0, max=md->GetNumberOfBlocks(); cc < max; ++cc)
{

....
}

}
else if (meshName == "particles" && association == vtkDataObject::FIELD_ASSOCIATION_POINTS &&

(arrayName == "uniqueGlobalId" || arrayName == "velocity" || arrayName == "velocityMagnitude"))
{

....
}

#ifndef NDEBUG
else
{

SENSEI_ERROR("the miniapp provides a cell centered array named \"data\" "
"on meshes named \"mesh\" or \"ucdmesh\"; or point centered arrays named "
"\"uniqueGlobalId\", \"velocity\" and \"velocityMagnitude\" on a mesh named \"particles\"")

return -1;
}

#endif

return 0;
}

Implementing the bridge to SENSEI

Typically 3 calls:
• Initialize()

– Set the DataAdaptor
– Initialize DataTimeStep
– Specify what analysis will be done. For

the Oscillator we use the
ConfigurableAnalysis class.

• Compute()
– For the Oscillator we do this with two

calls: set_data() / set_particles() and
analyze(), so that SENSEI may be
disabled in benchmarks

• Finalize()

bridge

simulation

initialize

compute

finalize

Initializing the bridge
void initialize(MPI_Comm comm, size_t window, size_t nblocks,

size_t n_local_blocks, int domain_shape_x, int domain_shape_y,
int domain_shape_z, int* gid, int* from_x, int* from_y, int* from_z,
int* to_x, int* to_y, int* to_z, int* shape, int ghostLevels,
const std::string& config_file)

{
timer::MarkEvent mark("oscillators::bridge::initialize");

(void)window;
(void)comm;

GlobalDataAdaptor = vtkSmartPointer<oscillators::DataAdaptor>::New();
GlobalDataAdaptor->Initialize(nblocks, shape, ghostLevels);
GlobalDataAdaptor->SetDataTimeStep(-1);

for (size_t cc=0; cc < n_local_blocks; ++cc)
{

GlobalDataAdaptor->SetBlockExtent(gid[cc],
from_x[cc], to_x[cc], from_y[cc], to_y[cc],
from_z[cc], to_z[cc]);

}

int dext[6] = {0, domain_shape_x, 0, domain_shape_y, 0, domain_shape_z};
GlobalDataAdaptor->SetDataExtent(dext);

GlobalAnalysisAdaptor = vtkSmartPointer<sensei::ConfigurableAnalysis>::New();
GlobalAnalysisAdaptor->Initialize(config_file);

}

Executing the in situ

void set_data(int gid, float* data)
{

GlobalDataAdaptor->SetBlockData(gid, data);
}

void set_particles(int gid, const std::vector<Particle> &particles)
{

GlobalDataAdaptor->SetParticles(gid, particles);
}

void analyze(float time)
{

GlobalDataAdaptor->SetDataTime(time);
GlobalDataAdaptor->SetDataTimeStep(GlobalDataAdaptor->GetDataTimeStep() + 1);
GlobalAnalysisAdaptor->Execute(GlobalDataAdaptor.GetPointer());
GlobalDataAdaptor->ReleaseData();

}

Finalizing the bridge

void finalize(size_t k_max, size_t nblocks)
{

(void)k_max;
(void)nblocks;

GlobalAnalysisAdaptor->Finalize();

GlobalAnalysisAdaptor = nullptr;
GlobalDataAdaptor = nullptr;

}

Data Extracts with VisIt/Libsim

Libsim puts VisIt in situ

• VisIt provides Libsim, a library
that simulations may use to let
VisIt connect and access their
data

• Avoids I/O and data movement

• Supports automated data
product generation

• Also supports user-driven
exploration of simulation data

VisIt
• Versatile open source software for visualizing and

analyzing extreme scale simulation datasets

Libsim
• Enables simulations to perform data analysis and

visualization in situ by applying VisIt algorithms to
data.

VisIt
runtime
library

Simulation
Code

Libsim

Adaptor
(C, C++,
Fortran)

output

Libsim enables flexible workflows

• Use the VisIt GUI to connect to
your simulation and explore!

• Simulations are like any other
data source

Commands

Metadata

Geometry &
images

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Rank 2 Rank 3

Rank 0 Rank 1

simulation

Extract
data, XDB

Output

Output

• Create automated routines to
generate data in batch

• Program directly using Libsim
• Use VisIt session files

Extracts contain the “interesting” stuff from the simulation
– Extracts are orders of magnitude smaller than volume data (avoid

I/O bottleneck)

– Provides enough geometry and field data that enables useful
post-hoc exploration

– Surface extracts stored in FieldView XDB format, VTK format, etc.

Simulation
Extracts Visualization

SENSEI Libsim

FieldView

Flexible Extract Export with SENSEI

• Hard-coding plots and
extracts limits flexibility

• SENSEI XML input file can
select plots for extract
creation and for rendering
• Provides hints to Libsim
• Specifies extracts, variables, files to

write
• Pass session file
• Pass hints to connect interactively

<sensei>
<!-- Libsim: Set up plots using session, save VTK files in batch -->
<analysis type="libsim"

frequency="5"
visitdir=“/usr/common/software/sensei/visit“
mode="batch"
session="oscillator-ucdmesh.session"
operation="export"
filename="iso-ghost%ts"
enabled="1"/>

</sensei>

<sensei>
<!-- Libsim Iso ucdmesh: connect VisIt interactively -->
<analysis type="libsim"

frequency=“10"
visitdir=“/usr/common/software/sensei/visit“
mode=“interactive,paused"
enabled="1"/>

</sensei>

Specifies which
plots, output files,
etc.

SENSEI’s Libsim Integration has Advanced

• Supports interactive connections using VisIt GUI
• Supports ghost data
• Supports unstructured meshes
• Use VisIt session files to produce visualizations in batch

• Session files record all of the setup to make a nice visualization
• Workflow: Connect interactively with VisIt -> set up plots -> save a

session file -> rerun in batch using the session file to specify plots

Ghost Data

• Simulations exchange ghost data
(additional layers of cells/nodes)
along processor boundaries to make
sure enough information is present to
calculate quantities that need
neighbor values

• Ghost Data are marked as such so
they can be used then they are
needed and skipped when
appropriate (e.g. avoid double-
counting in histogram)

Ghost Data in Oscillators Mini-app

• SENSEI’s Oscillators mini-
app now supports ghost
cells

• Enables isosurfaces of cell
data to be continuous
across domain boundaries

• Enabled using the –g #
command line argument to
generate a user-specified
number of ghost levels

mpirun –np 4 oscillators –g 2 –f oscillator.xml –t 0.1 samples.osc
Isosurfaces without (left) and with (right) ghost cells

SENSEI API for Ghost Data

• The VTK data representing meshes and fields need to contain extra
cells/nodes if ghost data are used

• Ghost data must also be marked as ghost

• SENSEI adds new methods in sensei::DataAdaptor that enables the
adaptor to mark cells/nodes as ghost data

– virtual int GetMeshHasGhostCells(const std::string &meshName, int &nLayers);

– virtual int AddGhostCellsArray(vtkDataObject* mesh, const std::string &meshName);

– virtual int GetMeshHasGhostNodes(const std::string &meshName, int &nLayers);

– virtual int AddGhostNodesArray(vtkDataObject* mesh, const std::string &meshName);

– The default implementations of these methods in indicate that no ghost data
are present

Ghost Data Encoding

• Ghost data arrays are
vtkUnsignedCharArray
objects that contain values
for each cell or node

• The allowable values
follow the conventions
used in VisIt and ParaView

• The array name must be
“vtkGhostType”

• 1=Ghost, 0=Real

//--
int DataAdaptor::GetMeshHasGhostCells(const std::string &/*meshName*/,
int &nLayers)

{
DInternals& internals = (*this->Internals);
nLayers = internals.ghostLevels;
return 0;

}

//--
int DataAdaptor::AddGhostCellsArray(vtkDataObject *mesh, const std::string &meshName)
{
int retVal = 1;
DInternals& internals = (*this->Internals);
vtkMultiBlockDataSet* md = vtkMultiBlockDataSet::SafeDownCast(mesh);
for (unsigned int cc=0, max=md->GetNumberOfBlocks(); cc < max; ++cc)
{
vtkSmartPointer<vtkImageData>& blockMesh = internals.BlockMesh[cc];
vtkCellData *cd = (blockMesh? blockMesh->GetCellData() : NULL);
if (cd != NULL)
{
if (cd->GetArray("vtkGhostType") == NULL)
{
vtkDataArray *g = CreateGhostCellsArray(cc); // Make vtkUnsignedCharArray.
cd->AddArray(g);
g->Delete();
}

retVal = 0;
}

}
return retVal;

}

Unstructured Grid Support

• SENSEI represents
unstructured grids using
vtkUnstructuredGrid

• Contains a set of points
• Contains cells defined by connectivity

(indices into the points)

• SENSEI’s Libsim integration
can now pass unstructured
grids through to VisIt

Some of the unstructured grid cell types supported in VTK

Unstructured Grid Support in Oscillator

• Oscillator exposes a second mesh called ucdmesh that is an
unstructured representation of its normal structured mesh

• The same fields are returned for both the structured and
unstructured meshes

Adaptor Changes:
• GetNumberOfMeshes() returns 2
• GetMeshNames() returns “mesh” for index 0 and “ucdmesh” for

index 1.
• GetMesh() returns the vtkUnstructuredGrid representation of the

data for index 1

Connecting to a SENSEI simulation using VisIt

• Enable Libsim analysis in the SENSEI
XML input file
• Set the mode to “interactive” or

“interactive,paused”
• The paused mode blocks the simulation

until VisIt connects and lets the
simulation proceed using the controls in
VisIt’s Simulation window

• Libsim will write a file called sensei.sim2

• Open sensei.sim2 in VisIt to connect

sensei.sim2

Connect interactively using VisIt GUI by opening sensei.sim2

Libsim Demo

Live Demo run on VM, or
VM + cori.nersc.gov

• Run oscillator mini-app

• Show effects of ghost cells

• Use session files to produce
extracts

• Run VisIt interactively

• Interactively connect to
oscillator simulation

Libsim Demo: Procedure

• Run all on the VM

• Run using a
combination of the
VM and
cori.nersc.gov

• Replace
USERNAME with
the token account
login

SENSEI VM Cori.nersc.gov
%
%
% cd sensei_insitu/demos
% cd sc18/visit_libsim
% ./demo.sh 1 USERNAME
% ./demo.sh 2 USERNAME
% ./demo.sh 3 USERNAME
% ./demo.sh 4 USERNAME
% ./demo.sh 5 USERNAME
% ./demo.sh 6 USERNAME

% cd /project/projectdirs
% cd m636
% cd sensei_insitu/demos
% cd sc18/visit_libsim
% ./demo.sh 1 USERNAME
% ./demo.sh 2 USERNAME
% ./demo.sh 3 USERNAME

If running on Cori, return
to VM to run steps 4,5,6

NOTE: when running on cori, the demo script will tell
you to run an salloc command to allocate a node.

Libsim Demo: Oscillator without ghost cells

• This part of the demo runs oscillator without
ghost cells and renders pictures using a VisIt
session file

• This can run in the VM or on Cori

• If running on Cori, run the salloc command
printed by the demo.sh command and run
again

% ./demo 1 USERNAME
% ./demo 2 USERNAME

Rips in the
surface

Run oscillator, render images

Display images

Libsim Demo: Oscillator with ghost cells

• This part of the demo runs oscillator with ghost cells and saves isosurface
extracts

• VisIt is then used to visualize the extracts

• Step 3 can run in the VM or on Cori
• Step 3 writes out the directory where files are saved to the console

• Step 4 must be run in the VM

% ./demo 3 USERNAME
% ./demo 4 USERNAME

Run oscillator, make extracts

Open VisIt GUI

Libsim Demo: Client Server to Cori
• Step 4 opens the VisIt GUI

• Click the Open button in
the Main window

• If Step 3 ran on Cori,
select “NERSC Cori” from
the host list to initiate a
connection to Cori

• If Step 3 ran in the VM,
skip the Cori only sections

2

1

Libsim Demo: Client Server to Cori - Password

• When connecting to
Cori, enter your Cori
account password in
VisIt’s password
window

Cori only

1

Libsim Demo: Select Files

• Once connected, paste
the directory name
containing the files into
the File Selection
Dialog’s path and press
Enter

• Click on the “iso-
ghost*.vtm” database

• Click OK

1

2

3

Libsim Demo: Engine Chooser

• If opening data that
reside on Cori, VisIt will
prompt you which host
profile should be used to
launch the VisIt compute
engine

• The SENSEI_SC18
profile should be
selected so click OK

1

Cori only

Libsim Demo: Set up Plots

• To set up plots based on
the VTK extracts that
SENSEI saved, click the
“Setup Demo 4” button

1

• When plots appear, note
how the surfaces do not
have gaps at domain
boundaries

• Change the view by
clicking/dragging on the
plots

• Move the time slider
• Quit VisIt

Libsim Demo: Interact with Plots

2

1

Libsim Demo: Connect Interactively to Oscillator

• This part of the demo runs oscillator
with ghost cells and waits for VisIt to
connect

• We will plot data form oscillator
interactively and watch it evolve

• Step 5 must be run in the VM

% ./demo 5 USERNAME
% ./demo 4 USERNAME

Run oscillator, wait for VisIt

Cleanup (at the end)

Libsim Demo: Connect Interactively to Oscillator

• Step 5 will open the VisIt GUI

• Open the File Selection
window

• Select the “sensei.sim2” file
• Click OK

• VisIt will to connect to the
oscillator

• Click the “Setup Demo 5”
button to make plots

sensei.sim2
1

2

3
4

Libsim Demo: Let Oscillator Continue

• Click the File menu

• Open the Simulation window

• Click the “run” button in the
Simulation window to let
oscillator continue

• Pause the simulation

• Add other plots

• Let the simulation continue
and watch it evolve

1

2,
5

4

Libsim information

• Information about instrumenting a simulation can be found at the
following sources:

• Getting Data Into VisIt
(https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf)

• VisIt Example Simulations
(http://visit.ilight.com/trunk/src/tools/DataManualExamples/Simulations)

• VisIt Wiki (http://www.visitusers.org)
• VisIt Email List (visit-users@email.ornl.gov)

http://www.visitusers.org/

SENSEI + Python

SENSEI is a powerful tool to connect simulations to
visualization and analysis tools for in situ use. Here we show
how to leverage this from a Python based simulation.

SENSEI's Python bindings

•  SENSEI based on VTK but we use SWIG (Simple Wrapper Interface
Generator) to generate Python bindings.

•  VTK's Python wrapper generator, doesn’t wrap many methods due to types
it doesn’t understand. Too purpose specific and inflexible.

•  SWIG has extensive C++ compatibility and can be taught to play nice with
VTK’s wrapper generator

•  Interface (.i) files control what gets wrapped. We wrap everything in
SENSEI.

•  Bound classes and API in Python have same names as in C++. Code looks
and feels very C++ like.

Footer 2

For developers, extending or adding on to SENSEI

vtk.i : A SWIG interface file defining 2 macros:

1.  VTK_SWIG_INTEROP(vtk_t)	
•  defines typemaps for using VTK wrapped VTK classes in SWIG generated

API (tells SWIG how to play nice with VTK)

2.  VTK_DERIVED(derived_t)	
•  enable SWIG memory management for wrapped classes derived from VTK

classes (VTK has unique reference counting implementation)

 Pass a VTK class to SENSEI

 Pass a SENSEI class to VTK

Footer 3

Instrumenting Python Based Simulations

Integrating SENSEI in a simulation written in Python

1.  Compile VTK with Python enabled. often a part of your chosen back-end.
eg Catalyst, Libsim.

2.  Compile SENSEI with Python features enabled

3.  Write data adaptor using sensei::ProgrammableDataAdaptor or
sensei::VTKDataAdaptor

4.  Instrument your simulation, and bridge code. sets up the data adaptor and
invoke analysis periodically through sensei::ConfigurableAnalysis
adaptor.

5.  Create any analysis specific run time configurations needed, eg. SENSEI
XML files, Catalyst Python scripts, VisIt session files, etc..

Footer 5

Newton mini-app

N-body Gravitational Simulation. A
single file, <400 lines.	

Solves Newton's law of gravitation

Velocity Verlet method

Fi	=	Fj	=	G*mi*mj/rij**2	

xi'	=	vi	

vi'	=	Fi/mi	

	

Footer 6

m1

F1

v2

x1

m2 F2

v1

x2

r12

Newton mini-app

Footer 7

–  direct solver, O(N**2)
–  Velocity Verlet

»  second order, symplectic, conserves
momentum exactly, time reversible

–  the simplest possible code
–  a single file, <400 lines, to better focus on

use of SENSEI interface
–  a production quality code could easily be

thousands of lines (see NBODY6 ~6K
lines)

Instrumenting the simulation

if	__name__	==	'__main__':	
				#	parse	the	command	line	
				…	
	
				#	set	up	the	initial	condition	
				n_bodies	=	args.n_bodies*n_ranks	
				ic	=	uniform_random_ic(n_bodies,	-5906.4e9,	\	
								5906.4e9,	-5906.4e9,	5906.4e9,	10.0e24,	\	
								100.0e24,	1.0e3,	10.0e3)	
	
				ids,x,y,z,m,vx,vy,vz,fx,fy,fz	=	ic.allocate()	
				h	=	args.dt	if	args.dt	else	ic.get_time_step()	
	
				#	run	the	sim	and	analysis	
				i	=	1	
				while	i	<=	args.n_its:	
								velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)	
								i	+=	1	

Footer 8

Instrumenting the simulation

				#	set	up	the	initial	condition
				n_bodies	=	args.n_bodies*n_ranks
				ic	=	uniform_random_ic(n_bodies,	-5906.4e9,	\
								5906.4e9,	-5906.4e9,	5906.4e9,	10.0e24,	\
								100.0e24,	1.0e3,	10.0e3)
				ids,x,y,z,m,vx,vy,vz,fx,fy,fz	=	ic.allocate()
				h	=	args.dt	if	args.dt	else	ic.get_time_step()	
	
				#	create	an	analysis	adaptor(bridge	code)
				adaptor	=	analysis_adaptor()
				adaptor.initialize(args.analysis,	args.analysis_opts)	
	
				#	run	the	sim	and	analysis
				adaptor.update(0,0,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
				i	=	1
				while	i	<=	args.n_its:
								velocity_verlet(x,y,z,m,vx,vy,vz,fx,fy,fz,h)
								adaptor.update(i,i*h,ids,x,y,z,m,vx,vy,vz,fx,fy,fz)
								i	+=	1	
	
				#	finish	up
				adaptor.finalize()

Footer 9

Interface to SENSEI (aka the bridge)

class	analysis_adaptor:	
				def	__init__(self):	
								self.DataAdaptor	=	sensei.VTKDataAdaptor.New()	
								self.AnalysisAdaptor	=	None	
	
				def	initialize(self,	analysis,	args=''):	
								#	select	and	configure	SENSEI	analysis	adaptor	
								…	
	
				def	finalize(self):	
								if	self.Analysis	==	'posthoc':	
												self.AnalysisAdaptor.Finalize()	
	
				def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
								#	convert	simulation	data	to	VTK	
								#	invoke	the	analysis	
								…	

–  Our analysis adaptor bridge selects and
configures and drives one of a number of
SENSEI analysis adaptors

–  Manages an instance of
sensei::VTKDataAdaptor	to which we will
create and pass VTK objects to	

Footer 10

Initializing the in situ analysis

def	initialize(self,	analysis,	args=''):	
				self.Analysis	=	analysis	
				args	=	csv_str_to_dict(args)	
				#	Libsim	
				if	analysis	==	'libsim':	
								self.AnalysisAdaptor	=	sensei.LibsimAnalysisAdaptor.New()	
								self.AnalysisAdaptor.AddPlots('Pseudocolor','ids',	False,False,	\	
												(0.,0.,0.),(1.,1.,1.),sensei.LibsimImageProperties())	
				#	Catalyst	
				elif	analysis	==	'catalyst':	
								if	check_arg(args,'script'):	
												self.AnalysisAdaptor	=	sensei.CatalystAnalysisAdaptor.New()	
												self.AnalysisAdaptor.AddPythonScriptPipeline(args['script'])	
				#	VTK	I/O	
				elif	analysis	==	'posthoc':	
								if	check_arg(args,'file','newton')	and	check_arg(args,'dir','./')	\	
												and	check_arg(args,'mode','0')	and	check_arg(args,'freq','1'):	
												self.AnalysisAdaptor	=	sensei.VTKPosthocIO.New()	
												self.AnalysisAdaptor.Initialize(comm,	args['dir'],args['file'],	\	
																[],['ids','fx','fy','fz','f','vx','vy','vz','v','m'],	\	
																int(args['mode']),int(args['freq']))	
				#	Configurable	
				elif	analysis	==	'configurable':	
								if	check_arg(args,'config'):	
												self.AnalysisAdaptor	=	sensei.ConfigurableAnalysis.New()	
												self.AnalysisAdaptor.Initialize(comm,	args['config'])	
	
				if	self.AnalysisAdaptor	is	None:	
								status('ERROR:	Failed	to	initialize	"%s"\n'%(analysis))	
								sys.exit(-1)	

Select and configure one of the existing
SENSEI analysis adaptors from command
line arguments
•  We are using Libsim, Catalyst, and

VTKPosthocIO SENSEI analysis classes
directly through the bindings

•  SENSEI's Configurable analysis class
also exposes these and more and is
configurable via an XML file. Eg ADIOS

Footer 11

Invoking in situ back analysis

def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
	
				status('%	5d\n'%(i))	if	i	>	0	and	i	%	70	==	0	else	None	
				status('.')	
	
				#	construct	VTK	a	dataset	
				node	=	points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz)	
				mb	=	vtk.vtkMultiBlockDataSet()	
				mb.SetNumberOfBlocks(n_ranks)	
				mb.SetBlock(rank,	node)	
	
				#	pass	it	to	the	data	adaptor	
				self.DataAdaptor.SetDataTime(t)	
				self.DataAdaptor.SetDataTimeStep(i)	
				self.DataAdaptor.SetDataObject(mb)	
	
				#	execute	the	in	situ	analysis	
				self.AnalysisAdaptor.Execute(self.DataAdaptor)	
	
				#	free	up	memory	
				self.DataAdaptor.ReleaseData()

1.  create and pass Multi-block (tree
based) dataset to SENSEI data
adaptor

–  each rank is responsible for a leaf in
the tree

2.  pass time and step number to data
adaptor

3.  invoke the SENSEI analysis adaptor

4.  release memory held in the adaptor

Footer 12

Create the VTK dataset

def	points_to_polydata(ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
				nx	=	len(x)	
				#	convert	simulation	to	VTK	data	structures	
				v_pts	=	to_vtk_points(nx,x,y,z)	
				v_cells	=	to_vtk_cells(nx)	
				v_ids	=	to_vtk_scalars(nx,'ids',ids)	
				v_m	=	to_vtk_scalars(nx,'m',m)	
				v_v,v_mv	=	to_vtk_vector(nx,'v',vx,vy,vz)	
				v_f,v_mf	=	to_vtk_vector(nx,'f',fx,fy,fz)	
				#	package	it	all	up	in	a	poly	data	set	
				pd	=	vtk.vtkPolyData()	
				pd.SetPoints(pts)	
				pd.GetPointData().AddArray(v_ids)	
				pd.GetPointData().AddArray(v_m)	
				pd.GetPointData().AddArray(v_v)	
				pd.GetPointData().AddArray(v_mv)	
				pd.GetPointData().AddArray(v_f)	
				pd.GetPointData().AddArray(v_mf)	
				pd.SetVerts(cells)	
				return	pd

Strategy
1.  create VTK arrays
2.  pass them to a VTK dataset

Who owns what?

–  VTK uses reference counting. Python
does too. Unfortunately they don't talk to
each other without some extra code.

–  Tell VTK to make a deep copy if the array
goes out of scope

Footer 13

Dataset geometry

def	to_vtk_points(nx,x,y,z):	
				xyz	=	np.empty(3*nx,	dtype=np.float32)	
				xyz[::3]	=	x[:]	
				xyz[1::3]	=	y[:]	
				xyz[2::3]	=	z[:]	
				vxyz	=	vtknp.numpy_to_vtk(xyz,	deep=1)	
				vxyz.SetNumberOfComponents(3)	
				vxyz.SetNumberOfTuples(nx)	
				pts	=	vtk.vtkPoints()	
				pts.SetData(vxyz)	
				return	pts	
	
def	to_vtk_cells(nx):	
				cids	=	np.empty(2*nx,	dtype=np.int32)	
				cids[::2]	=	1	
				cids[1::2]	=	np.arange(0,nx,dtype=np.int32)	
				cells	=	vtk.vtkCellArray()	
				cells.SetCells(nx,	vtknp.numpy_to_vtk(cids,	\	
								deep=1,	array_type=vtk.VTK_ID_TYPE))	
				return	cells

Strategy
1.  create an empty array
2.  interleave x,y,z components or cell length

and point ids
3.  pass new array to VTK data structure

TODO – test new zero copy stuff from DG

Footer 14

Array based data

def	to_vtk_scalars(nx,name,s):	
				scalar	=	vtknp.numpy_to_vtk(s,	deep=1)	
				scalar.SetName(name)	
				return	scalar	
	
def	to_vtk_vector(nx,name,vx,vy,vz):	
				#	vector	in	interleaved	layout	
				vxyz	=	np.zeros(3*nx,	dtype=np.float32)	
				vxyz[::3]	=	vx	
				vxyz[1::3]	=	vy	
				vxyz[2::3]	=	vz	
				vector	=	vtknp.numpy_to_vtk(vxyz,	deep=1)	
				vector.SetName('v')	
				#	magnitude	
				mv	=	np.sqrt(vx**2	+	vy**2	+	vz**2)	
				mag	=	vtknp.numpy_to_vtk(mv,	deep=1)	
				mag.SetName('mag%s'%(name))	
				return	vector,mag

Scalars
1.  pass new array to VTK data structure

Vectors/Tensors

1.  create an empty array

2.  interleave components
3.  pass new array to VTK data structure

TODO – test new zero copy stuff from DG

Footer 15

Writing a DataAdaptor in Python

Strategy

•  Add a class that contains functions returning callbacks that implement the
SENSEI data adaptor API

–  Closures enable class state to be accessed from the callbacks

•  This class contains an instance of sensei::ProgramableDataAdaptor	
which has been initialized with your callbacks

•  Set up call forwarding. when a non-existent member function is called, the
call is forwarded to the sensei::ProgramableDataAdaptor instance

Footer 17

The Programable Data Adaptor

class	ProgrammableDataAdaptor	:	public	DataAdaptor	
{	
public:	
		using	GetNumberOfMeshesFunction	=	std::function<int(unsigned	int&)>;	
	
		///	Set	the	callable	that	will	be	invoked	when	GetNumberOfMeshes	is	called	
		void	SetGetNumberOfMeshesCallback(const	GetNumberOfMeshesFunction	&callback);	
	
		///	@breif	Gets	the	number	of	meshes	a	simulation	can	provide	
		int	GetNumberOfMeshes(unsigned	int	&numMeshes)	override;	
	
	
		using	GetMeshNameFunction	=	
				std::function<int(unsigned	int,	std::string	&)>;	
	
		///	Set	the	callable	that	will	be	invoked	when	GetMeshName	is	called	
		void	SetGetMeshNameCallback(const	GetMeshNameFunction	&callback);	
	
		///	@breif	Get	the	name	of	the	i'th	mesh	
		int	GetMeshName(unsigned	int	id,	std::string	&meshName)	override;	
	
		.	
		.	
		.	
		continues	for	all	overrides	in	the	data	adaptor	API	
	
};	

Footer 18

C++ class
implementing

SENSEI’s
DataAdaptor API

that forwards
incoming SENSEI
API calls to user

provided “callables”

SENSEI’s Python
bindings handle

forwarding to user
provided Python

“callables”

Writing a Python DataAdaptor

class	data_adaptor:	
				def	__init__(self):																						#	set	up	data	structures	to	capture	sim	data,	and	plumbing	to	ProgramableDataAdaptor	instance		
								…	

				def	__getattr__(self,	*args):												#	forward	calls	to	ProgramableDataAdaptor	instance	
								…	
				def	base(self):																										#	return	PDA	instance		
								…	
				def	validate_mesh_name(self,	mesh_name):	#	helper	checks	mesh	name	
								…	

				def	update(self,	i,t,ids,x,y,z,	
									m,vx,vy,vz,fx,fy,fz):															#	capture	latest	simulation	data	
								…	
				def	set_array_1(self,	vals,	name):							#	Convert	sim	array	into	VTK	scalar	
								…	
				def	set_array_3(self,	vx,vy,vz,	name):			#	Convert	sim	arrays	into	VTK	vector	
								…	
				def	set_geometry(self,	x,y,z):											#	Convert	sim	arrays	into	VTK	Polydata	Dataset	
								…	
				def	get_number_of_meshes(self):										#	get	SENSEI	API	callback	
								…	
				def	get_mesh_name(self):																	#	get	SENSEI	API	callback	
								…	
				def	get_number_of_arrays(self):										#	get	SENSEI	API	callback	
								…	
				def	get_array_name(self):																#	get	SENSEI	API	callback	
								…	
				def	get_mesh(self):																						#	get	SENSEI	API	callback	
								…	
				def	add_array(self):																					#	get	SENSEI	API	callback	
								…	
				def	release_data(self):																		#	get	SENSEI	API	callback	
	
Footer 19

the purpose of this class:

1.  provides callbacks

implementing SENSEI data
adaptor API

2.  gives callbacks access to
simulation state

3.  installs the callbacks in the
ProgrammableDataAdaptor

Writing a Python DataAdaptor

				def	__init__(self):																						#	set	up	data	structures	to	capture	sim	data,	and	plumbing	to	ProgramableDataAdaptor	instance	
								#	capture	data	from	sim	
								self.arrays	=	{}	
								self.points	=	None	
								self.cells	=	None	
								#	PDA	plumbing.	connect	all	the	callbacks	
								self.pda	=	sensei.ProgrammableDataAdaptor.New()	
								self.pda.SetGetNumberOfMeshesCallback(self.get_number_of_meshes())	
								self.pda.SetGetMeshNameCallback(self.get_mesh_name())	
								self.pda.SetGetNumberOfArraysCallback(self.get_number_of_arrays())	
								self.pda.SetGetArrayNameCallback(self.get_array_name())	
								self.pda.SetGetMeshCallback(self.get_mesh())	
								self.pda.SetAddArrayCallback(self.add_array())	
								self.pda.SetReleaseDataCallback(self.release_data())	
	
				def	__getattr__(self,	*args):												#	forward	calls	to	PDA	instance	
								return	self.pda.__getattribute__(*args)	
	
				def	base(self):																										#	return	PDA	instance	
								return	self.pda	
	
				def	validate_mesh_name(self,	mesh_name):	#	helper	checks	mesh	name	
								if	mesh_name	!=	"bodies":	
												raise	RuntimeError('no	mesh	named	"%s"'%(mesh_name))	
	

Footer 20

Install callbacks that
implement SENSEI

DataAdaptor API

simulation state that
can be accessed

from callbacks

forward calls to the PDA
instance

get the PDA, it will be
passed into the analysis

Python DataAdaptor

						
				def	get_number_of_meshes(self):										#	get	SENSEI	API	callback	
								def	callback():	
												return	1	
								return	callback	
	
				def	get_mesh_name(self):																		#	get	SENSEI	API	callback	
								def	callback(idx):	
												if	idx	!=	0:	raise	RuntimeError('no	mesh	%d'%(idx))	
												return	'bodies'	
								return	callback	
	
				def	get_number_of_arrays(self):											#	get	SENSEI	API	callback	
								def	callback(mesh_name,	assoc):	
												self.validate_mesh_name(mesh_name)	
												return	len(self.arrays.keys())	\	
																if	assoc	==	vtk.vtkDataObject.POINT	else	0	
								return	callback	
	
				def	get_array_name(self):																	#	get	SENSEI	API	callback	
								def	callback(mesh_name,	assoc,	idx):	
												self.validate_mesh_name(mesh_name)	
												return	self.arrays.keys()[idx]	\	
																if	assoc	==	vtk.vtkDataObject.POINT	else	0	
								return	callback	
	

Footer 21

Python DataAdaptor
def	get_mesh(self):																						#	get	SENSEI	API	callback	
								def	callback(mesh_name,	structure_only):	
												self.validate_mesh_name(mesh_name)	
												#	local	bodies	
												pd	=	vtk.vtkPolyData()	
												if	not	structure_only:	
																pd.SetPoints(self.points)	
																pd.SetVerts(self.cells)	
												#	global	dataset	
												mb	=	vtk.vtkMultiBlockDataSet()	
												mb.SetNumberOfBlocks(n_ranks)	
												mb.SetBlock(rank,	pd)	
												return	mb	
								return	callback	
	
				def	add_array(self):																					#	get	SENSEI	API	callback	
								def	callback(mesh,	mesh_name,	assoc,	array_name):	
												self.validate_mesh_name(mesh_name)	
												if	assoc	!=	vtk.vtkDataObject.POINT:	
																raise	RuntimeError('no	array	named	"%s"	in	cell	data'%(array_name))	
												pd	=	mesh.GetBlock(rank)	
												pd.GetPointData().AddArray(self.arrays[array_name])	
								return	callback	
	
				def	release_data(self):																		#	get	SENSEI	API	callback	
								def	callback():	
												self.arrays	=	{}	
												self.points	=	None	
												self.cells	=	None	
								return	callback	

Footer 22

The closure pattern: a
function that returns a
function. The returned

function can see/access
data that is in the scope

of the outer/returning
function. here it gives us
access to a reference to

“self”, and simulation
state stored therein.

Python DataAdaptor

				def	update(self,	i,t,ids,x,y,z,m,vx,vy,vz,fx,fy,fz):	
								#	update	the	state	arrays	
								self.set_array_1(ids,	'ids')	
								self.set_array_1(m,	'm')	
								self.set_array_3(vx,vy,vz,	'v')	
								self.set_array_3(fx,fy,fz,	'f')	
								self.set_geometry(x,y,z)	
								self.SetDataTime(t)						#	fwd	to	PDA	
								self.SetDataTimeStep(i)		#	fwd	to	PDA	

Footer 23

Python DataAdaptor

	
				def	set_array_1(self,	vals,	name):	
								arr	=	vtknp.numpy_to_vtk(vals,	1)	
								arr.SetName(name)	
								self.arrays[name]	=	arr	
	
				def	set_array_3(self,	vx,vy,vz,	name):	
								#	vector	
								nx	=	len(x)	
								vxyz	=	np.zeros(3*nx,	dtype=vx.dtype)	
								vxyz[::3]	=	vx	
								vxyz[1::3]	=	vy	
								vxyz[2::3]	=	vz	
								vtkv	=	vtknp.numpy_to_vtk(vxyz,	deep=1)	
								vtkv.SetName(name)	
								self.arrays[name]	=	vtkv	
								#	mag	
								mname	=	'mag%s'%(name)	
								mv	=	np.sqrt(vx**2	+	vy**2	+	vz**2)	
								vtkmv	=	vtknp.numpy_to_vtk(mv,	deep=1)	
								vtkmv.SetName(mname)	
								self.arrays[mname]	=	vtkmv	

Footer 24

Python DataAdaptor

	
				def	set_geometry(self,	x,y,z):	
								#	points	
								nx	=	len(x)	
								xyz	=	np.zeros(3*nx,	dtype=x.dtype)	
								xyz[::3]	=	x[:]	
								xyz[1::3]	=	y[:]	
								xyz[2::3]	=	z[:]	
								vxyz	=	vtknp.numpy_to_vtk(xyz,	deep=1)	
								vxyz.SetNumberOfComponents(3)	
								vxyz.SetNumberOfTuples(nx)	
								pts	=	vtk.vtkPoints()	
								pts.SetData(vxyz)	
								self.points	=	pts	
								#	cells	
								cids	=	np.empty(2*nx,	dtype=np.int32)	
								cids[::2]	=	1	
								cids[1::2]	=	np.arange(0,nx,dtype=np.int32)	
								cells	=	vtk.vtkCellArray()	
								cells.SetCells(nx,	vtknp.numpy_to_vtk(cids,	\	
												deep=1,	array_type=vtk.VTK_ID_TYPE))	
								self.cells	=	cells	

Footer 25

Python Analysis Backend

Python Analysis Backend

•  Enable in situ analysis using all the power and simplicity of Python

•  Rapid prototyping and design of diagnostics and numerical analysis

•  Entirely independent of any other backend

•  Can be coupled to simulations which have no knowledge of Python. for
instance to a simulation written in Fortran

Footer 27

SENSEI Python Analysis Adaptor

namespace	sensei	{	
	
class	PythonAnalysis	:	public	AnalysisAdaptor	
{	
public:	
			void	SetScriptFile(const	std::string	&file);	
			void	SetInitializeSource(const	std::string	&code);	
	
			int	Initialize();	
	
			int	Execute(sensei::DataAdaptor	*da)	override;	
			int	Finalize()	override;	
};	
	
}		

28

wraps the data adaptor
instance and calls the
user provided Python

function

A C++ Class that embeds
a Python interpreter and
forwards API calls to a
user provided Python

implementation

Creates and initializes
an embedded

interpreter, loads the
user script, runs the
initialization source,

invokes the user
provided initialization

function
calls the user provided

function, shuts down the
embedded interpreter

sets a string containing
Python code that is
executed before the

user provided Initialize
function is called

sets the path to the user
provided Python script

User Provided Script Template

def	Initialize():	
			#	your	initialization	code	here	
			return	
	
def	Execute(dataAdaptor):	
			#	your	in	situ	analysis	code	here	
			return	
	
def	Finalize():	
			#	your	tear	down	code	here	
			return

29

Parallel Python code

●  SENSEI supports ghost zones using the masking conventions defined by
VisIt (also used by VTK/ParaView) now. The mask array is named
vtkGhostType

●  SENSEI’s MPI communicator , which may not be MPI_COMM_WORLD, is
shared with the Python script via a global variable comm	

30

Case Study: Chemical Reaction on 2D Substrate

Input Data: Proxy simulation of chemical
reaction on a 2D substrate

Output of analysis: Area where reaction
rate exceeds a threshold of 1.0

Footer 31

“Area above threshold” Source Code
	
	
import	numpy	as	np,	matplotlib.pyplot	as	plt	
from	vtk.util.numpy_support	import	*	from	vtk	import	vtkDataObject,	vtkCompositeDataSet	
	
#	default	values	of	control	parameters	
threshold	=	0.5	
mesh	=	''	
array	=	''	
cen	=	vtkDataObject.POINT	
out_file	=	'area_above.png'		
times	=	[]	
area_above	=	[]	
	
def	pt_centered(c):	
				return	c	==	vtkDataObject.POINT	
	
def	Execute(adaptor):	
				#	get	the	mesh	and	arrays	we	need	
				dobj	=	adaptor.GetMesh(mesh,	False)	
				adaptor.AddArray(dobj,	mesh,	cen,	array)	
				adaptor.AddGhostCellsArray(dobj,	mesh)	
				time	=	adaptor.GetDataTime()	
				#	compute	area	above	over	local	blocks	
				vol	=	0.	
				it	=	dobj.NewIterator()	
				while	not	it.IsDoneWithTraversal():	
								#	get	the	local	data	block	and	its	props	
								blk	=	it.GetCurrentDataObject()	
								#	get	the	array	container	
								atts	=	blk.GetPointData()	if	pt_centered(cen)	\	
												else	blk.GetCellData()	
								#	get	the	data	and	ghost	arrays	
								data	=	vtk_to_numpy(atts.GetArray(array))	
								ghost	=	vtk_to_numpy(atts.GetArray('vtkGhostType'))	
								#	compute	the	area	above	
								ii	=	np.where((data	>	threshold)	&	(ghost	==	0))	
								vol	+=	len(ii[0])*np.prod(blk.GetSpacing())	
								it.GoToNextItem()	
				#	compute	global	area	
				vol	=	comm.reduce(vol,	root=0,	op=MPI.SUM)	
				#	rank	zero	writes	the	result	
				if	comm.Get_rank()	==	0:	
								times.append(time)	
								area_above.append(vol)	
	
def	Finalize():	
				if	comm.Get_rank()	==	0:	
								plt.plot(times,	area_above,	'b-',	linewidth=2)	
								plt.xlabel('time')	
								plt.ylabel('area')	
								plt.title('area	Above	%0.2f'%(threshold))	
								plt.savefig(out_file)	
				return	0			

	
	
	

32

import	numpy	as	np,	matplotlib.pyplot	as	plt	
from	vtk.util.numpy_support	import	*	from	vtk	import	vtkDataObject,	vtkCompositeDataSet	
	
#	default	values	of	control	parameters	
threshold	=	0.5	
mesh	=	''	
array	=	''	
cen	=	vtkDataObject.POINT	
out_file	=	'area_above.png'		
times	=	[]	
area_above	=	[]	
	
def	pt_centered(c):	
				return	c	==	vtkDataObject.POINT	
	

def	Execute(adaptor):	
				#	get	the	mesh	and	arrays	we	need	
				dobj	=	adaptor.GetMesh(mesh,	False)	
				adaptor.AddArray(dobj,	mesh,	cen,	array)	
				adaptor.AddGhostCellsArray(dobj,	mesh)	
				time	=	adaptor.GetDataTime()	
				#	compute	area	above	over	local	blocks	
				vol	=	0.	
				it	=	dobj.NewIterator()	
				while	not	it.IsDoneWithTraversal():	
								#	get	the	local	data	block	and	its	props	
								blk	=	it.GetCurrentDataObject()	
								#	get	the	array	container	
								atts	=	blk.GetPointData()	if	pt_centered(cen)	\	
												else	blk.GetCellData()	
								#	get	the	data	and	ghost	arrays	
								data	=	vtk_to_numpy(atts.GetArray(array))	
								ghost	=	vtk_to_numpy(atts.GetArray('vtkGhostType'))	
								#	compute	the	area	above	
								ii	=	np.where((data	>	threshold)	&	(ghost	==	0))	
								vol	+=	len(ii[0])*np.prod(blk.GetSpacing())	
								it.GoToNextItem()	
				#	compute	global	area	
				vol	=	comm.reduce(vol,	root=0,	op=MPI.SUM)	
				#	rank	zero	writes	the	result	
				if	comm.Get_rank()	==	0:	
								times.append(time)	
								area_above.append(vol)	
	
	

def	Finalize():	
				if	comm.Get_rank()	==	0:	
								plt.plot(times,	area_above,	'b-',	linewidth=2)	
								plt.xlabel('time')	
								plt.ylabel('area')	
								plt.title('area	Above	%0.2f'%(threshold))	
								plt.savefig(out_file)	
				return	0			
	

Configurable Analysis XML

<sensei>	
		<analysis	type="python"	script_file="area_above.py"	enabled="1">	
				<initialize_source>	
threshold=1.	
mesh='mesh'		
array='data'		
cen=1	
					</initialize_source>	
		</analysis>	
</sensei>		

33

path to the user provided
Python script

Python code that
executes before user’s

Initialize function

Running the demo

This demo shows Python based analysis from a code written in C++. The surface area
where the data exceeds a runtime specified threshold over a 2D domain is calculated
at each update. At the end of the run, an image showing the calculation over time is
produced.

	
VM	
cd	~/sensei_insitu/demos/sc18/python	
./oscillator_python.sh	
	
Cori	
cd	$SCRATCH	
salloc	-N	2	-C	haswell	-t	01:00:00	\	
				-q	regular	--reservation=SC18_SENSEI	
./sensei_insitu/demos/sc18/adios/oscillator_python.sh	

	
	
	
	

Footer 34

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

In transit Architecture

Footer 2

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

Data management tradeoffs at exascale à to hybrid staging

Balance of memory size and speed

Feedback for node designs with NVRAM, larger
memory, on-chip NIC

Network throughput and latency impact on SDMA tasks

Placement of operations in concert with solver and
network topology

Explore node layout choices for data management

4	 Exascale	Computing	Project	

What	is	ADIOS	
•  An extendable framework that allows developers to

plug-in
–  I/O methods: Aggregate, Posix, MPI
–  Services: Compression, Decompression
–  Formats: HDF5, netcdf, ADIOS-BP,…
–  Plug-ins: Analytic, Visualization

•  Incorporates the “best” practices in the I/O
middleware layer

•  Bindings	to	F90,	C++,	C,	Python,	R,	Java,	Matlab

•  https://csmd.ornl.gov/adios,
https://github.com/ornladios/ADIOS, (1.13.1)
https://github.com/ornladios/ADIOS2 (2.3 in Dec)

Interface)to)apps)for)descrip/on)of)data)(ADIOS,)etc.))

Buffering)Feedback))Schedule)

Mul/Bresolu/on)
methods)

Data)Compression)
methods)

Data)Indexing)
(FastBit))methods)

Data)Management)Services)

Workflow))Engine) Run/me)engine) Data)movement)Provenance)

Plugins)to)the)hybrid)staging)area)

Visualiza/on)Plugins)Analysis)Plugins)

Parallel)and)Distributed)File)System)

IDX) HDF5)AdiosBbp) pnetcdf) “raw”)data) Image)data)

Viz.)Client)

18

ADIOS
Chosen
For the

ECP WDM ECP
Demo

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

ADIOS Adaptors

Footer 5

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

What simulation data types does SENSEI support?

Footer 6

•  many more purpose specific and
esoteric data types are supported by
VTK

•  no explicit dependence on other
parts of VTK such as i/o, filters,
renderering, etc etc

vtkDataObject

Uniform Cartesian

Stretched Cartesian

Curvilinear (logically Cartesian)

Unstructured/FEM

Molecular

Tabular

Graphs

Multi-"block"

AMR

Array Collection (no geometry)

PIC/Point cloud

www.vtk.org

bridge code

VTK data
adaptor

simulation
Configurable

analysis
adaptor

ADIOS
analysis
adaptor

bridge code

Configurable
analysis
adaptor

Catalyst
analysis
adaptor

Libsim
analysis
adaptor

Histogram
analysis
adaptor

ADIOS end-
point

ADIOS data
adaptor

End-Point

Footer 7

XML selects
one of these

FLEXPATH transport
moves data across
network

Simulation runs in 1st job

End-point runs in 2nd job

In transit demo

The demo runs 2 parallel MPI jobs, in the first the oscillator sends data through
the ADIOS Analysis adaptor. In the second the end point uses the ADIOS
data adaptor to receive.

SENSEI XML is displayed in cyan along with mpiexec/srun commands in white.
The first job’s output is displayed in red, the second job’s output in green

srun “–r	X” argument tells to start the job on node X

cd	$SCRATCH	

salloc	-N	2	-C	haswell	-t	01:00:00	\	

				-q	regular	--reservation=SC18_SENSEI	

./sensei_insitu/demos/sc18/adios/in_transit_libsim.sh	

	

Footer 8

In transit demo (VM)

The demo runs 2 parallel MPI jobs, in the first the oscillator sends data through
the ADIOS Analysis adaptor. In the second the end point uses the ADIOS
data adaptor to receive.

SENSEI XML is displayed in cyan along with mpiexec/srun commands in white.
The first job’s output is displayed in red, the second job’s output in green

cd	~/sensei_insitu/demos/sc18/adios	

./in_transit_libsim.sh	

	

Footer 9

Demo output

Footer 10

rendered with libsim

rendered with catalyst

Design and execution patterns

MxN MxN

Research focus areas:
•  MxN data

redistribution
•  Depth of copies

N producer ranks,
N consumer ranks
Unidirectional
data movement/
control
(N:N)

M producer ranks,
N consumer ranks
Unidirectional
data movement/
control
(M:N)

M producer ranks,
N1 and N2
consumer ranks,
Unidirectional
data movement/
control
(M:<N1, N2>)

•  Leveraging arch
features like NVRAM
for staging

•  Leveraging 3rd party
tools like TensorFlow
for ML-based
analytics

•  Specific science app
use case drivers

SENSEI In Situ Demonstrations
Computational Monitoring with ParaView/Catalyst

Agenda

• Overview of ParaView/Catalyst Functionality

• Catalyst Editions

• Python Pipelines

• Live Connections for Computational Monitoring

• Demo / Exercise

ParaView & Catalyst
• Scaled to 106 MPI ranks on ALCF’s Mira BG/Q

• SC16 visualization showcase winner generated animation using Catalyst

• HPCWire Best HPC Visualization Product or Technology

• 2011 (VTK), 2012, 2014 (runner-up), 2016 Editor’s Choice (ParaView)

• 2015 Reader’s Choice – tie (Paraview)

• Used on many HPC architectures: Cray, BlueGene, SGI, etc.

What Can Catalyst Do?
• Catalyst can save

• A subset of your data (usu. only useful for small tests)

• Scripts can determine when to start/stop saving data

• A sequence of images

• 1+ per timestep; multiple views are possible.

• A Cinema database

• A separate image per "actor", with per-pixel depth & scalar values.

• Interactive post hoc re-coloring & composition of images via depth &

scalar values.

What Can Catalyst Do?

• Two use cases:

• Extremely low overhead with Catalyst Editions and a fixed visualization

• Only compile portions of ParaView and VTK that you will use

• Pipeline configured via C++

• Extremely flexible visualizations with Catalyst Python scripts

• ParaView can write a Python script you can customize

• Change scripts on a per-job basis

Catalyst Editions

• Reduce the number of libraries built and linked to reduce startup time and
memory overhead.

• Works with either static or dynamic library linkage.

• Especially important on large machines if dynamic linking is used as link
loaders have much less work to do.

• Reduces both executable file size and resident memory usage, but
reduces flexibility since some functionality will no longer be present.

In depth: https://blog.kitware.com/paraview-catalyst-editions-what-are-they/
https://www.paraview.org/Wiki/Generating_Catalyst_Source_Tree

https://blog.kitware.com/paraview-catalyst-editions-what-are-they/
https://www.paraview.org/Wiki/Generating_Catalyst_Source_Tree

Fixed Catalyst Pipelines

• SENSEI provides 2 example C++ pipelines:

• A slice filter that saves an image of a slice through your data.

• A particle renderer that uses ParaView's point-Gaussian renderer.

• These are examples if you decide the overhead of Python is too high.

Exercises 1 & 2

• Create a visualization of oscillator mini-app data using a fixed pipeline

• Configure the oscillator to use the Catalyst slice analysis

• Show output images

cd ~/sensei_insitu/demos/sc18/pv_catalyst
cd /project/projectdirs/m636/sensei_insitu/
 demos/sc18/pv_catalyst
./demo 0 username
./demo 1 username
./demo 2 username

On the VM

On Cori

On either

Python Pipelines
• Load a sample of your data in ParaView

• May be a downsampled version, but

• Should include all variables/attributes/fields you wish to analyze.

• Create a visualization pipeline in ParaView by filtering data

• Successive filters generate subsetted or alternative forms of data

without overwriting the original data, but they do consume memory.

• Choose representation style and visual properties for data

• Export a Catalyst script with Catalyst→Generate Script (v5.5.2) or
Catalyst→Define Exports and the Catalyst Export Inspector panel (v5.6.0).

Pipelines for ParaView 5.5.2

The following slides show how to create Python pipeline scripts using
ParaView version 5.5.2, which is the version in the tutorial VM.

Creating a Python Pipeline

• Attach to Catalyst/Live or load
an example dataset.

• Create a pipeline. Here we have
averaged cell data to points,
contoured, and sliced an
example dataset.

• Then click "Catalyst→Generate
Script".

1

2

3

1

2

3

Creating a Python Pipeline

• Choose the datasets from
ParaView that will be provided
by your simulation via SENSEI.

• Click "Add" for each dataset.

• Then click "Next".

1
1

2

3
2

3

Creating a Python Pipeline

• For each dataset from ParaView,
set the "Simulation Name" used
by SENSEI to identify that mesh.
The names on the right should
be mesh names from your data
adaptor.

• Click "Next".

11

2

2

Creating a Python Pipeline
• "Live Visualization" will create a

script that attempts to connect
to ParaView at each timestep.

• "Output rendering..." will create
a script that saves image
sequences.

• "Output to Cinema" will create a
script that saves composable
depth images.

• Set other options; click "Finish".

1

3

2

1

3

2

4

4

⦙

Pipelines for ParaView 5.6.0

The following slides show how to create Python pipeline scripts using
ParaView version 5.6.0, which is soon to be released and significantly

different/improved.

Python Pipelines

• The Catalyst Export Inspector panel can
save

• Data Extracts, which write filtered
datasets using VTK's I/O libraries

• Image Extracts, which render filtered data
and save image sequences or Cinema
databases

• The Enable Live Connections checkbox tells
Catalyst to look for ParaView client
connections

Python Pipelines

• The Catalyst Export Inspector panel can
save

• Data Extracts, which write filtered
datasets using VTK's I/O libraries

• Image Extracts, which render filtered data
and save image sequences or Cinema
databases

• The Enable Live Connections checkbox tells
Catalyst to look for ParaView client
connections

Python Pipelines

• The Catalyst Export Inspector panel can
save

• Data Extracts, which write filtered
datasets using VTK's I/O libraries

• Image Extracts, which render filtered data
and save image sequences or Cinema
databases

• The Enable Live Connections checkbox tells
Catalyst to look for ParaView client
connections

Python Pipelines

• Now configure SENSEI to run the Catalyst Python pipeline with an XML
configuration file for SENSEI's ConfigurableAnalysis:

Exercises 3 & 4

• Demo:

• Create a visualization of oscillator mini-app data

• Save a Catalyst script

• Exercise

• Configure the oscillator to use the Catalyst script

• Run the oscillator again using the flexible, run-time pipeline

cd ~/sensei_insitu/demos/sc18/pv_catalyst
cd /project/projectdirs/m636/sensei_insitu/
 demos/sc18/pv_catalyst
./demo 3 username
./demo 4 username

On the VM

On Cori

On either

Live Connections
• With ParaView Live connections,

• Catalyst will check for a ParaView client connection request at the
beginning of each timestep.

• If present, a TCP/IP connection between the client and simulation is
used to bootstrap a connection between the simulation and
ParaView's server (which may be running in parallel on the same or
different nodes of the cluster).

• Datasets are transmitted upon demand (by the GUI client) from the
simulation to the ParaView server, where they can be filtered and
rendered in parallel.

Live Connections

• To enable ParaView Live, edit your Catalyst pipeline Python script; change
this:

• to this:

Enable Live-Visualization with ParaView and the update frequency
coprocessor.EnableLiveVisualization(False, 1)

Enable Live-Visualization with ParaView and the update frequency
coprocessor.EnableLiveVisualization(True, 1)

Live Connections
• Before starting your simulation,

run the ParaView client, connect
to the remote server (if you want
to perform parallel rendering), and
tell ParaView to accept Catalyst
connections.

• You may also want to pause
Catalyst, which will halt the
simulation when it connects so
you have an opportunity to
configure ParaView.

Live Connections
• Before starting your simulation,

run the ParaView client, connect
to the remote server (if you want
to perform parallel rendering), and
tell ParaView to accept Catalyst
connections.

• You may also want to pause
Catalyst, which will halt the
simulation when it connects so
you have an opportunity to
configure ParaView.

Live Connections

• The builtin or cori server is data
present on ParaView's server
process(es).

• The catalyst "server" is data
present in the simulation.

• Clicking on catalyst pipelines will
transfer the data to ParaView's
server process(es).

Simulation running
Simulation paused
Simulation running; breakpoint set

Demo / Exercises 5 & 6

• Demo:

• Edit a Catalyst script to enable Live connections

• Exercise

• Run ParaView and accept connections from Catalyst

• Run the oscillator and connect using ParaView Live

cd ~/sensei_insitu/demos/sc18/pv_catalyst
./demo 5 username
./demo 6 username

This only runs

on the VM

Getting Help

• User's Guide: http://www.paraview.org/paraview-guide

• Discourse Forum: https://discourse.paraview.org/

• Websites

• http://www.paraview.org/

• http://www.paraview.org/in-situ/

• http://www.cinemascience.org/

http://www.paraview.org/paraview-guide
https://discourse.paraview.org/
http://www.paraview.org/
http://www.paraview.org/in-situ/
http://www.cinemascience.org/

SENSEI In Situ Demonstrations
Integrating VTK-m and Cinema into SENSEI

Agenda
• Overview of VTK-m

• Requirements

• Instrumentation Examples

• Direct access

• vtkmlib from VTK

• Demo / Exercise

VTK-m
• VTK-m is a "m"any-core version of VTK that also integrates

• new C++ features not available in 1993.

• design changes based on the VTK community's experience.

• VTK-m is designed around worklets that evaluate a single point or cell.

• Algorithms in VTK-m are cross-compiled to run on Cuda and TBB.

• VTK-m datasets are structurally different than VTK data objects.

Requirements

• SENSEI is targeting the version of VTK-m that will ship with VTK 8.2.0.

• Since VTK 8.2.0 has not been released, the virtual machine for this tutorial
comes with a build against a known-good version of VTK & VTK-m.

Instrumenting VTK-m
• Preferred: Use vtkmlib from VTK/Accelerators/Vtkm/vtkmlib

• Construct VTK datasets from VTK-m datasets without copying large
arrays.

• Pass the resulting datasets to SENSEI's data adaptor.

• Direct access

• Simply create vtkDataArray subclasses that reference external memory.

• This is not recommended as it does not generalize.

Exercise: Haar wavelet

• The Haar wavelet basis is simple to compute; discarding the second set of
coefficients halves the size of the dataset. Applying once along each
coordinate axis cuts dataset size by 8.

• Applying the Haar and discarding part of its basis results in a low-spatial
resolution dataset that is much smaller; it may serve as a global simulation
summary over time, especially when combined with other techniques.

Demo / Exercise

• Exercise

• Run the oscillator, saving out Haar-transform-
reduced datasets in Cinema format

• Visualize the resulting data in a web browser
using arctic-viewer.

cd ~/sensei_insitu/demos/sc18/vtk-m
./demo 1 username
./demo 2 username

This only runs

on the VM

Instrumenting LAMMPS with SENSEI

LAMMPS

• Large-scale Atomic/Molecular Massively
Parallel Simulator

• Classical molecular dynamics code
• Runs on single processors or in parallel using

message-passing techniques and a spatial-
decomposition of the simulation domain

• Accelerated performance on CPUs, GPUs,
and Intel Xeon Phis

• Distributed by Sandia National Laboratories

Figure 2: Bilinear interpolation. Red circles represent mea-
sured execution times. x-variable represents problem size. y-
variable represents the process count and network diameter in
case of computation and communication time interpolations re-
spectively.

the communication performance. We observed less than 8% predic-
tion error in communication time estimates. With regards to mem-
ory, the implementation of some analysis routines require a fixed
amount of memory independent of the problem size. Other analy-
sis routines allocate memory proportional to the problem size. We
use bilinear interpolation to determine the memory requirement us-
ing the problem size as the x-variable and the process count as the
y-variable. In absence of precise analytical model due to lack of
complete knowledge of the application, linear interpolation gives a
fairly accurate estimate as shown here by the low prediction errors,
and in earlier work [27]. Note that we can refine the performance
model and leverage the various performance counters and/or mod-
els present in different systems.

5. EXPERIMENTS AND RESULTS
We describe the experimental setup, the applications and the in-

situ analyses used in the evaluation, and present the efficacy of our
in-situ analyses scheduling in several typical usage scenarios.

5.1 Setup
We conduct our experiments on the IBM Blue Gene/Q Mira sys-

tem at Argonne National Laboratory. Mira is a 48-rack machine
with Power BQC 1.6 GHz processor cores. Each rack has 2 mid-
planes consisting of 512 compute nodes each. Each compute node
has 16 GB RAM. Mira has peak I/O bandwidth of 240 GB/s to the
GPFS file system.

5.2 Application Case Studies
We evaluate our optimization-based scheduling of in-situ anal-

yses using two applications. First, we performed our experiments
using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) classical molecular simulation code [23,33]. Two
LAMMPS problems were examined in order to best span a large
range of conditions explored in molecular simulations of liquids,
materials, and biological systems. The first problem investigated
is a box of water molecules solvating two types of ions. For this
problem, the number of atoms in the system was varied from 16
million to 400 million atoms. Table 2 lists the analyses investigated
for this problem. The set comprises of radial distribution functions
(RDF), the mean square displacements (MSD) of molecules/ions,
and velocity auto-correlation functions. Combined, these physical
observables provide key information on understanding the struc-
ture and dynamics of liquids and materials [5]. Additionally, their
respective algorithms (e.g. accumulating histograms, computing
time averages, evaluating correlation functions) are representative
of those employed in the calculation of a large class of physical
observables (e.g. dielectric constant and shear viscosity).

Table 2: Analyses for simulation of water and ions in LAMMPS
Analysis
Name

Analysis Description

hydronium
rdf (A1)

Compute hydronium-water,
hydronium-hydronium, and hydronium-ion RDFs
averaged over all molecules

ion rdf (A2) Compute ion-water and ion-ion RDFs averaged
over all molecules

vacf (A3) Compute velocity auto-correlation function for
the water-oxygen, hydronium-oxygen, and ion
atoms

msd (A4) Compute mean squared displacements averaged
over all hydronium and ions

The second LAMMPS problem explored in this work is the rhodopsin
protein benchmark, which consists of a protein embedded in a mem-
brane and solvated with water and ions [34]. For this problem, we
varied the number of atoms in the system from 16 million to 1 bil-
lion atoms. The set of analyses investigated for this problem are the
radius of gyration for a single protein and 2D histogram of density
profiles for the membrane and protein structures (listed in Table 3).
These properties provide insight into the distribution of particles
within an assembled structure and throughout the system. Just as
for the water+ions system, these analyses are commonly employed
in studies of aggregate structures and assemblies and are of interest
to a large community of researchers [5]. Figure 3 shows a snapshot

Figure 3: Snapshot of the LAMMPS rhodopsin benchmark
(32,000 atoms): protein (solid purple; center) is embedded in
membrane (translucent green; middle) and solvated with water
(translucent blue; top and bottom) and ions (orange spheres).

of the base LAMMPS rhodopsin benchmark (32,000 atoms) using
VMD [1]. The solid purple structure in the center is the protein. It
is embedded in membrane which is shown in translucent green in
the middle and solvated with water (shown in translucent blue at
the top and bottom) and ions (shown as orange spheres).

The second application used in our evaluation is the FLASH
multiphysics multiscale simulation code [13]. FLASH is an adap-
tive mesh, parallel hydrodynamics code developed to simulate high
energy density physics and astrophysical thermonuclear flashes in
two or three dimensions, such as Type Ia supernovae, Type I X-
ray bursts, and classical novae. It solves the compressible Euler
equations on a block-structured adaptive mesh. FLASH provides
an Adaptive Mesh Refinement (AMR) grid using a modified ver-
sion of the PARAMESH package [26] and a Uniform Grid (UG) to
store Eulerian data. For this study, we used the Sedov simulation

LAMMPS rhodopsin benchmark
(32,000 atoms).
Courtesy Malakar et al. "Optimal
scheduling of in situ analysis for
large-scale scientific simulations."
SC 2015.http://lammps.sandia.gov/

http://lammps.sandia.gov/

Enabling in situ interactive visualization for large-scale
molecular simulations

• LAMMPS is a good representative application of large scale molecular
dynamics simulations

• We use LAMMPS as a library
– No need to recompile or instrument LAMMPS original code

• Drive LAMMPS from a simple application instrumented with SENSEI
• Integrate OSPRay (Intel Software-Defined visualization) as an additional

SENSEI infrastructure for interactive visualization
• Use libIS as a lightweight in transit library

W.Usher, S. Rizzi, I. Wald, J. Amstutz, J. Insley, V. Vishwanath, N. Ferrier, M.E. Papka, V. Pascucci.
libIS: A Lightweight Library for Flexible In Transit Visualization. ISAV 2018.

Data format

• LAMMPS particle format is basically x,y,z coordinates with additional
fields like atom type or radius

• Add LAMMPS fix/external command in input file for LAMMPS to share
pointers to its internal data after computing every timestep of the
simulation

• Additional information here: Coupling LAMMPS to other codes
https://lammps.sandia.gov/doc/Howto_couple.html

https://lammps.sandia.gov/doc/Howto_couple.html

Ray tracer for interactive scientific visualization-style rendering
• Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,…)
• Ray traced shading effects for shadows, ambient occlusion
Free & open source: Apache 2.0 License
• http://ospray.org/

Built on top of Embree, extensive use of ISPC for vectorization
The MPIDistributedDevice provides a prototype distributed API for

OSPRay, which includes a basic raycaster and a method for applications to
express their data distribution for compositing

OSPRay

[Wald et al. ’15]

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J.
Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for
Scientific Visualization." IEEE transactions on visualization and computer graphics
23, no. 1 (2017): 931-940.

Slide courtesy the OSPRay team

OSPRay
Viewer

libIS-clientlibIS-sim

LAMMPS Input File

liblammps

LAMMPS
Driver

Bridge

A
na

ly
si

s
 A

da
pt

orD
ata

A
daptor

LAMMPS instrumentation with SENSEI and OSPRay

LAMMPS as a
library

In transit. Two
concurrent jobs

Viewer decoupled
from renderer

Callback function from LAMMPS
(every timestep)
void LAMMPSCallback(void *ptr, bigint ntimestep,

int nlocal, int *id, double **x, double **f)
{

Info *info = (Info *) ptr;

// extents
double boxxlo = *((double *) lammps_extract_global(info->lmp,"boxxlo"));
double boxxhi = *((double *) lammps_extract_global(info->lmp,"boxxhi"));
double boxylo = *((double *) lammps_extract_global(info->lmp,"boxylo"));
double boxyhi = *((double *) lammps_extract_global(info->lmp,"boxyhi"));
double boxzlo = *((double *) lammps_extract_global(info->lmp,"boxzlo"));
double boxzhi = *((double *) lammps_extract_global(info->lmp,"boxzhi"));

// get pointer to atom types
int *type = (int *) lammps_extract_atom(info->lmp,"type");

// update SENSEI bridge
bridge::Set_data(nlocal, id, type, x, boxxlo, boxylo, boxzlo, boxxhi, boxyhi, boxzhi);

// visualize
bridge::Execute();

}

XYZ atom coords
from LAMMPS

get atom types
from LAMMPS

Update SENSEI
bridgeVisualize

Materials Science with LAMMPS

• Massively-parallel classical molecular
dynamics (MD) simulations with LAMMPS

• Various temperature conditions

• Varying rates of silicene deposition

• Characterize material structure and growth

Simulations were run on Mira at Argonne
162,000 iridium atoms

~6 Million total compute hours

Silicene: Mono-layer Silicon / Iridium Substrate

Nanoscale
rsc.li/nanoscale

ISSN 2040-3372

 PAPER
 Mathew J. Cherukara, Subramanian K. R. S. Sankaranarayanan et al.
 Silicene growth through island migration and coalescence

Volume 9 Number 29 7 August 2017 Pages 10147–10512

Cherukara, Mathew J., Badri Narayanan, Henry Chan, and Subramanian Sankaranarayanan.
"Silicene growth through island migration and coalescence." Nanoscale 9, no. 29 (2017)

Slide courtesy Joe Insley,
Argonne National Laboratory

Live demo
§ Live demo on virtual machine

– Running LAMMPS coupled
to OSPRay for interactive
visualization

– Navigation: Use RIGHT
click to zoom in/out, LEFT
click to rotate

§ Steps:

Open a terminal
% cd ~/sensei_insitu/demos/sc18/lammps
% ./silicene-demo-sc18.sh

In Situ Costs and Performance

What is the cost of in situ processing?

Concern: simulations want to use all available resources, so having an
understanding of in situ resource utilization is useful.

In other words: In situ infrastructure must play nicely with simulation

Full details in SC16 paper: Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque,
Greg Eisenhauer, Nicola Ferrier, Junmin Gu, Kenneth E. Jansen, Burlen
Loring, Zarija Lukic, Suresh Menon, Dmitriy Morozov, Patrick O’Leary,
Rateesh Ranjan, Michel Rasquin, Christopher P. Stone, Venkat Vishwanath,
Gunther H. Weber, Brad Whitlock, Matthew Wolf, K. John Wu, and E. Wes
Bethel, Performance Analysis, Design Considerations, and Applications of
Extreme-scale In Situ Infrastructures. In Proceedings of SC16, November
2016.

Shared resources

•  Initialization costs need to be monitored
– Static build options important as HPC simulation size increases
–  Initialization costs do get amortized

•  Finalization costs can be a factor for certain in situ algorithms

•  Memory costs can be a factor
– Shared memory usage for simulation and in situ arrays (“zero copy”)
– Request only needed arrays through the DataAdaptor’s AddArray() method
– Some analysis algorithms can require a lot of memory
– Autocorrelation could potentially need to store full data at each time step. Use

autocorrelation window size to reduce the amount of time steps stored

In situ compute

•  In situ computation may not need to be done every time step
–  Lower fidelity time stepping output
– Only when something “interesting” is happening

•  Can still reduce output size
–  Image output is fixed size and independent of simulation size
– Coarsen data extracts
– Compute summary statistics (e.g. autocorrelation, histogram)

Three key performance analysis focus areas

One-time costs: initialization
•  Some in situ setups may entail non-zero

initialization costs, e.g.:
•  Per-rank config file processing

One-time costs: finalization
•  Some in situ setups may entail

non-trivial initialization costs,
e.g.:

•  Global reductions

•  Gives insights into ways to
optimize

Recurring costs
•  Execution time:

•  Different methods require differing
amounts of computation

•  Algorithmic complexity at scale
•  In situ methods that use reductions
•  In situ vs. in transit tradeoffs

•  Memory consumption
•  Temporal analysis methods must

buffer more data

Measuring the cost of in situ

Two questions:
How much overhead associated with use of in situ methods,

infrastructure (runtime, memory)?
Does this change with varying concurrency?

Additionally:
In situ and in transit configurations
In situ and post hoc: end-to-end comparison

U. Ayachit, A. Bauer, E. P. N. Duque, G. Eisenhauer, N. Ferrier, J. Gu, K. E. Jansen, B. Loring, Z.
Lukic, S. Menon, D. Morozov, P. O’Leary, R. Ranjan, M. Rasquin, C. P. Stone, V. Vishwanath, G.
H. Weber, B. Whitlock, M. Wolf, K. Wu, and E. W. Bethel. Performance Analysis, Design
Considerations, and Applications of Extreme-scale In Situ Infrastructures. In Proceedings of
SC16, November 2016.

Methodology for measuring cost of in situ

Miniapplication: data source (next slide)
In situ methods

–  Histogram computation
–  Autocorrelation computation (temporal analysis)
–  Extract and render a 2D slice from a 3D volume

In situ infrastructures
–  VisIt/Libsim
–  ParaView/Catalyst
–  ADIOS

Measure:
•  Runtime and memory footprint
•  At varying levels of concurrency
•  One-time and recurring

Test Platform
Cori Phase I at NERSC
Cray XC system
1630 compute nodes
Dual 2.3Ghz 16-core Intel
Haswell processors
128GB RAM/node

Concurrency levels of
tests:
812 (~1K)
6496 (~6K)
45440 (~45K)

Miniapplication - oscillators

Bulk-synchronous parallel computation
of periodic, damped oscillators (MPI-
based app)

No interprocess communication -
entirely analytic, embarassingly
parallel

For m oscillators and per-rank grid size
of N3:

•  Per-rank memory footprint: 2N3

•  Per-rank complexity: mN3

Miniapp configurations – in situ methods

Configuration Intention

Original Miniapp with no SENSEI interface, no I/O.
Direct-coupling (subroutine call) to analysis methods
Measure runtime/memory with no in situ

Baseline Miniapp with the SENSEI interface enabled
No analysis or I/O
Measure overhead of in situ interface in isolation

Histogram Miniapp+SENSEI interface+histogram computation
No in situ infrastructures
Compare performance to Original, Baseline

Autocorrelation Miniapp+SENSEI interface+autocorrelation computation
No in situ infrastructures
Compare performance to Original, Baseline

Miniapp configurations – with in situ infrastructures

Configuration Intention

Catalyst-slice Miniapp + SENSEI interface + Catalyst
Catalyst performs a 2D slice extraction of 3D volume
Followed by parallel rendering, produces an image
Compare to Original, Baseline

Libsim-slice Miniapp + SENSEI interface + Libsim
Libsim performs a 2D slice extraction of 3D volume
Followed by parallel rendering, produces an image
Compare to Original, Baseline

ADIOS-FlexPath Miniapp + SENSEI interface + ADIOS/FlexPath
In transit implementation of histogram, autocorrelation,
Catalyst-slice
Compare to Original, Baseline

Measuring impact of SENSEI interface

Run Original and Baseline configs, 3 levels of concurrency: 1K, 6K, 45K
•  Original: miniapp + subroutine called autocorrelation
•  Baseline: miniapp + SENSEI bridge to autocorrelation

Compare runtime (left), memory footprint (right)

No significant difference reflects zero-copy nature of the interface

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

O
rig

in
al
	

SE
N
SE
I	

Au
to
co
rr
el
a;

on
	

Original	Time	(seconds)	 SENSEI	Time	(seconds)	

0

10

20

30

40

50

60

70

812 6496 45440 812 6496 45440

Original SENSEI	Autocorrelation

M
ax
	V
m
HW

M
	in
	M

Bs

Comparing in situ to post hoc

Post hoc configuration
•  Simulation computes something
•  Then writes results to disk
•  Post hoc method reads from disk

and performs analysis

In Situ configuration
•  Simulation computes

something
•  Then in situ method

computes something
•  (No disk I/O involved)

Post hoc study concurrency
 Simulation Postprocess

812 82

6496 650

45440 4545

Weak-scaling Study
•  Measure post hoc end-to-end cost

•  Sim writes, post hoc reads,
processing

•  Compare to in situ configurations
•  Also measure time-to-solution for

100 timesteps

Post hoc: cost of writes

Baseline miniapp with the addition of
parallel I/O

•  VTK I/O, non-collective
•  MPI-IO collective is slower (see

the paper)
•  This is not an I/O study. J We

used the fastest I/O approach we
could get our hands on.

Weak-scaling: linear increase with
problem size

I/O cost is significant at high
concurrency

Cost of Writes
Concurrency 1 step Aggregate

812 2 GB, 0.12s 0.2 TB, 12s

6496 16 GB, 0.67s 1.6 TB, 67s

45440 123 GB. 9.05s 12.3 TB, 905s

Post hoc: cost of reads + processing

0 500 1000 1500 2000 2500

82
650

4545
82*

650*
4545*

82
650

4545
hi
st
og
ra
m

au
to
	

co
rre

la
tio

n
pa
ra
vi
ew

-
sli
ce

read process write

Time required for reads, processing, and writing (results) for
post hoc methods at varying level of concurrency.

In situ: time-to-solution

0	 50	 100	 150	 200	 250	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

812	

6496	

45440	

Ba
se
lin
e	

Hi
st
og
ra
m
	

Au
to
	

co
rr
el
a:

on
	
Ca
ta
ly
st
-	

Sl
ic
e	

Li
bs
im

-	
Sl
ic
e	

simula:on	 analysis	

Post hoc vs. in situ time to solution

Post hoc fixed costs (at 45K): about 1200s and 12.3 TB
disk space

Fewer ranks for analysis processing results in longer
analysis runtime (in this 1:10 configuration, which is
typical for post hoc use cases)

Configuration (45K) In Situ Post hoc: sim + write + read + process

Histogram ~40s ~1230s = ~25s + ~905s + ~300s + (a few secs)

Autocorrelation ~225s ~2930s = ~25s + ~905s + ~300s + ~1700s

Catalyst-slice ~80s ~1505s = ~25s + ~905s + ~300s + ~275s

In situ at scale, Performance in the real world

PHASTA: Computational Fluid Dynamics

PHASTA from UC Boulder run on Mira@ANL
•  Simulation of realistic geometry tail rudders and active flow

control
•  Coupled via SENSEI interface to Catalyst-slice, producing an

output image
–  Field data, nodal coordinates: zero copy
–  Connectivity data: full copy

•  Runs with 256K and 1M MPI ranks
–  1M run was 4 times larger than any known in situ analysis run
–  Key technologies include reduced library size, simplified output

specification and static linking using IBM XL compilers for
fastest run times

–  In situ overhead: 8.2%, 33%, 13%
•  The 33% traced to zlib/PNG compression on rank 0

IAMR Rayleigh-Taylor Libsim

Footer 19

2048 Cores Cori Haswell

IAMR Rayleigh-Taylor Catalyst

Footer 20

2048 Cores Cori Haswell

Performance

Footer 21

2048 Cores Cori Haswell Data from rank with fastest single
execute time
Data from rank with fastest single
execute time

Data from rank with fastest single
execute time
Data from rank with median single
execute time

Data from rank with fastest single
execute time
Data from rank with slowest single
execute time

ParaView Catalyst VisIt Libsim

Wrapping Up

SC17 In Situ Tutorial Summary

•  Why should you care about in situ?
•  Flops >> I/O; in situ is a viable approach for coping with

this problem
•  What in situ infrastructures are available?
•  What about interfacing my sim code to them?
•  What are the performance issues to be thinking about?

Footer 23

Links

•  Main page – http://www.sensei-insitu.org/

•  Software repo – https://gitlab.kitware.com/sensei/sensei

•  ADIOS – https://www.olcf.ornl.gov/center-projects/adios/

•  VisIt/Libsim – https://www.visitusers.org/index.php?title=Category:Libsim

•  ParaView Catalyst – http://www.paraview.org/in-situ/

Footer 24

Tutorial evaluation

•  Was this tutorial useful to you?

•  Were there any subjects you’d like to see covered?
•  More of some?
•  Less of others?

•  Please provide SC17 with tutorial feedback
•  https://submissions.supercomputing.org/eval.html

•  Also, can provide feedback to us at:
•  Andy Bauer: andy.bauer@kitware.com
•  Wes Bethel: ewbethel@lbl.gov

Footer 25

Conclusions and future work

Write once, use everywhere

Easy to add new analysis/frameworks

Understanding data transformation costs

Data Model: supporting arbitrary layouts for connectivity

Bigger runs – current best is 1Mi MPI processes on Mira@ALCF

More examples, tutorials, improved docs, etc.

This work is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy, Office of
Advanced Scientific Computing Research, under Contract No. DE-AC02-05CH11231, through the grant “Scalable Analysis Methods and In
Situ Infrastructure for Extreme Scale Knowledge Discovery,” program managers Dr. Lucy Nowell and Dr. Laura Biven.

SENSEI: Scalable Analysis Methods
and In Situ Infrastructure for Extreme
Scale Knowledge Discovery

Acknowledgment

Footer 27

This work is supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy, Office of Advanced Scientific
Computing Research, under Contract No. DE-AC02-05CH11231, through the grant
“Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale
Knowledge Discovery,” program managers Dr. Lucy Nowell and Dr. Laura Biven.

SENSEI: Scalable Analysis Methods
and In Situ Infrastructure for Extreme
Scale Knowledge Discovery

