
VIAME: AN OPEN-SOURCE FRAMEWORK FOR

UNDERWATER IMAGE AND VIDEO ANALYTICS

INSTALL GUIDE AND QUICK START MANUAL

VIAME

• Video and Image

Analytics for Multiple

Environments

• Both installers (pre-built

binaries) and source code

are hosted on github.com

• Pre-built binaries are for

users, the source code

and build instructions are

for developers

2

viametoolkit.org

https://github.com/VIAME/VIAME

VIAME Flavors

3Web Client Interface

Original Desktop Interfaces Multi-Modality/Stereo Desktop Interface

Desktop Version Installation

4

Windows 7/8/10, 64-Bit

Requirements: Windows 7, 8, or 10, 64-Bit
Recommendations: NVIDIA GPU with >=4 Gb Video RAM (partial image processing support),

>= 8 Gb Video RAM (full image processing support)

A. Download Binaries

Goto: https://github.com/VIAME/VIAME

Download Correct Pre-Built Binary for your Operating System:

Binaries are currently large (~4Gb) due to the inclusion of multiple
model files for training different methods.

B. Uninstall Previous Versions

Only perform this step if you have a previously installed version.

Typically located at C:\Program Files\VIAME

Remove this directory, optionally backing it up until you validate your
new installation

Ubuntu 16.04/18.04 64-Bit, CentOS 7 64-Bit

Requirements: Ubuntu 16.04 or CentOS 7
Recommendations: NVIDIA GPU with >=4 Gb Video RAM (partial image processing support),

>= 8 Gb Video RAM (full image processing support)

Goto: https://github.com/VIAME/VIAME

Download Correct Pre-Built Binary for your Operating System:

Binaries are currently large (~4Gb) due to the inclusion of multiple
model files for training different methods.

Only perform this step if you have a previously installed version.
Typically located at /opt/noaa/viame

Remove this directory (‘rm –rf /opt/noaa/viame’), optionally backing
it up until you validate your new installation
To optionally backup, open terminal:

cd /opt/noaa
mv viame viame-bckup

After completing installation remove old version:
rm -rf /opt/noaa/viame-bckup

https://github.com/VIAME/VIAME
https://github.com/VIAME/VIAME

5

C. Install Dependency – NVIDIA Drivers

Only perform this step if you don’t have CUDA or appropriate NVIDIA
drivers installed ahead of time and are using GPU-enabled binaries.

Drivers can be found here:

https://www.nvidia.com/Download/index.aspx?lang=en-us

(Version 410.48 or above is required for installation)

Or alternatively get CUDA (installing CUDA is no longer required, even
though it use to be, only the drivers are, but they are included in CUDA):

*Windows 7, unlike 8 and 10, requires some updates and service packs
installed, e.g. KB2533623 alongside drivers or else you will get errors using
GPU-dependent code.

Only perform this step if you don’t have CUDA or appropriate NVIDIA
drivers installed ahead of time. Drivers can be found here:

https://linuxhint.com/ubuntu_nvidia_ppa/ (Ubuntu)
https://www.nvidia.com/Download/index.aspx?lang=en-us (Other)

(Version 410.48 or above is required for installation)

Or alternatively get CUDA (CUDA is no longer required, only the drivers
are, even though it use to be, but they are included in CUDA):

Goto: https://developer.nvidia.com/cuda-toolkit-archive

The best way to install the drivers depends on your operating system.
We recommend using package managers (like the above PPA for
Ubuntu) when able, but if that fails falling back to one of NVIDIA’s
standalone installers.

Desktop Version Installation

https://www.nvidia.com/Download/index.aspx?lang=en-us
https://www.microsoft.com/en-us/download/details.aspx?id=26764
https://linuxhint.com/ubuntu_nvidia_ppa/
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-toolkit-archive

6

D. Extract Downloaded VIAME Binaries

Choose an installation directory for VIAME.

We recommend C:\Program Files\VIAME, from here on out this will
be known as [viame-install]

Extract the binaries from step A, for example if using winrar select
the below, or alternatively ‘Extract All’ using the default windows
option:

Installation Complete

Choose an installation directory for VIAME.

We recommend /opt/noaa/viame, from here on out this will be
known as [viame-install]

Extract the binaries from step A, for example, right click on the
downloaded .tar.gz binaries file and click “Extract Here”

The alternative is to untar the file on the command line type:

tar -xvf VIAME-v*-Ubuntu-64Bit.tar.gz

Navigate to the folder with the extracted ‘viame’ folder and move
it to [viame-install], for example:

mkdir –p /opt/noaa/
mv viame /opt/noaa

The contents of the folder should look like the below.

Depending on your system, you may need to get permission to
modify your install directory (e.g. /opt/noaa/viame)

Installation Complete

Desktop Version Installation

Platform Add-Ons

7

Add-ons contain extra model files for particular
problems, extra custom project files (see proceeding
slides) and standalone applications for specific
problems.

To install model files, extract them in a similar
fashion to the installation binaries and then copy
them into your install tree (make sure to match the
high level folder, e.g. don’t copy the VIAME folder in
the patch to VIAME/VIAME, in the install make sure
that the contents of the ‘VIAME’ patch folder go in
the ‘VIAME’ install folder in matching directories).

Models in them will then show up in the GUIs or
also be runnable on the command line.

To install project files extract in directory of choice,
to install custom executables instruct then run the
launch scripts in the high-level directory of the
package.

8

Your python install directory is incorrect, see slide 7.

Your GPU isn’t very powerful, or maybe you’re running too many things at once, or have an old

process which has stuck around. Maybe try logging out and in again if you suspect the later.

Your install looks like the left on windows, not the right. Something went wrong and your download and

extraction of the binaries was only partially complete (Low disk space? Dropped connection?),

redownload and re-extraction is recommended.

Common Install Issues

You probably installed the wrong version of Anaconda, see slide 6.

If you get any run-time issues mentioning failing to import numpy as well this is usually the case.

Ways to Run System Components

9

[viame-install] = Where you installed the software to (C:\Program Files\VIAME, /opt/noaa/viame)

(1) Running examples in the [viame-install]/examples sub-folder

The full manual for these is available here: https://viame.readthedocs.io/en/latest/

And are mirrored in the comments of the github repository here: https://github.com/VIAME/VIAME/tree/master/examples

Both the manual and corresponding examples are broken down by functionality (annotation,

object detection, measurement, etc…). This method can be useful if you just want to run one

component in a standalone capacity without much effort.

(2) Project files located in [viame-install]/configs/prj-(linux or windows)/*

Useful for bulk processing data, as well as training object detection and tracking models with

three to four different techniques. Contains run scripts for multiple functions in the same folder.

Can be easily copied to a new directory, e.g. your computer’s desktop (or anywhere else of

choice) and run from there.

[RECCOMENDED]

https://viame.readthedocs.io/en/latest/
https://github.com/VIAME/VIAME/tree/master/examples

How to Run Assorted Functionality

10

On Windows:

All examples and project file launchers are .bat scripts

You just need to double click them to run them

(sometimes a security dialogue will pop up but just ignore them)

On Linux:

You may need to know 3 command line commands:

'bash' - for running commands, e.g. 'bash run_annotation_gui.sh' which launches the application

'ls' - for making file lists of images to process, e.g. ‘ls *.png > input_list.txt' to list all png image files in a folder

'cd' - go into an example directory, e.g. 'cd annotation_and_visualization' to move down into the

annotation_and_visualization example directory. 'cd ..' is another useful command which moves one directory up,

alongside a lone 'ls' command to list all files in the current directory.

Alternatively, you can make .sh scripts double-clickable via:

https://askubuntu.com/questions/138908/how-to-execute-a-script-just-by-double-clicking-like-exe-files-in-windows

to not have to deal with launching things from the terminal.

As a second alternative you can make shortcuts to your VIAME annotation GUI and common scripts:

https://askubuntu.com/questions/854373/how-to-create-a-desktop-shortcut

How to Run From Examples Folder

11

(1) Go to the examples directory

(2) Choose your example

(3) Read the corresponding entry in either the manual of example webpage

(4) Run the example scripts

In some examples knowing how to make image lists are also helpful for some examples. There are scripts

showing how to do this in the project files which can be edited in notepad++ if necessary on Windows. On Linux

running ‘ls [path]*.png > input_list.txt’ will generate a list as well, for a directory of .pngs in ‘path’. You can also

mount network drives and do your processing off them.

Example run files can also be run from different directories if you open up the launch script in a notepad editor and

change the ‘VIAME_INSTALL’ path to point to your VIAME installation directory.

Using Project Files

12

Project files are broken down based on operating system (Windows

vs Linux/Mac) then class, in [viame-install]/configs:

Lot of launchers here, but more on that later….

Using Project Files

13

for_images - is designed to process a single list of imagery at time

(except for training detectors which can be on multiple lists)

for_videos - is designed to process either a folder of videos, a single video, or a

folder of folders of images

To use them copy them to a folder you want to work out of, hopefully one with a bit of

disk space if you plan on doing model training.

Possible requirement: if you installed VIAME to a non-default location, in order to run

any of the scripts you will need to change VIAME_INSTALL at the top of your run

script to point to your installation, i.e.:

Using Project Files

14

The video project file processes a folder of videos called ‘videos’ in the project

directory by default. You can alternatively let ‘videos’ be a shortcut to a network drive

or other non-local location (e.g. an external hard drive). Or have the project file be on

the alternative drive or network.

‘videos’ can also be a directory of directory of images

Using Project Files

15

Also in project files (for videos) are frame rates to process videos at, these can be

changed along with the video input directory. The later can be modified to point to

other locations on disk or network as desired.

Using Project Files

16

The image project file processes a list of images called “input_list.txt” at either train

(model generation) or test time (model application). This file point to imagery to

process, 1 file per line.

On windows, the ‘make_image_list.bat’ command can be used

to make this list if you put your images in a folder called

‘images’ then double click make_image_list.bat; similarly on

Linux the ‘ls’ command can be used. The glob pattern can also

be changed from ‘*’ to ‘*.png” to list images of only a certain

type and not all files in the directory.

Example link to image directory stored on external drive

17

New Classifier
Training via IQR

New Detector
Training via Deep

Learning

Running Existing
Detectors and Trackers

(Traditional or Deep)

Higher-Level Analytics
(Automated Detection Quantities, Heatmaps, Occurrence vs Time Plots)

New Annotations or
Annotation Correction

Fix Boxes, Labels, or Masks

Input Data

3 Core Possible Detector Training Workflows

3 Core Detection Training Workflows

Workflow #1: Traditional Deep Learning Model Generation from Scratch.

Process:

(a) Load up Imagery in Annotator

(b) Annotate Imagery Manually

(c) Export Detection or Tracks Files

(d) Repeat for as Many Sequences as Possible

(e) Run Model Training

(f) Evaluate Model Performance

(g) Repeat (d) thru (f) as Desired on Detector Fail Cases

- Focusing additional annotation on sequences with the most errors

Pros:

• Models perform better than most other solutions when trained with

enough training data

Cons:

• Requires a large amount of training data and user time to generate it

3 Core Detection Training Workflows

Workflow #2: Traditional Deep Learning Model Generation with Partial Automation

Process:

(a) Load up Imagery in Annotator

(b) Run an Automated Detector
• Can be IQR based

• Can be default model or other pre-trained detector

• Can be a user generated deep detector

(c) Correct and Export Detection or Tracks Files

(d) Repeat for as Many Sequences as Desired

(e) Run Model Training

(f) Evaluate Model Performance

(g) Repeat (b) thru (f) as Desired on Detector Fail Cases

Pros:

• Can speed up annotation if automated detector is decent enough

Cons:

• If automated detector is poor it can take more effort to correct automated

outputs instead doing annotations from scratch

3 Core Detection Training Workflows

Workflow #3: IQR (Video Search with Adjudication) for Rapid Model Generation

Process:

(a) Create searchable index for a video archive

(b) Launch search GUI

(c) Use search GUI to generate IQR (.svm) models

(d) Save models to category directory

(e) Evaluate models

Pros:

• Can be done with very little user effort, mostly computer runtime

• Can be used to rapidly generate models for new classes

Cons:

• GUI generally crashes after about 6 iterations due to memory issues

• Models generally not as good as deep models trained on enough

training data (but can be better for cases with not a lot of training data,

often, depends on the exact case)

Types of Annotation and Detection Models

21

Box-Level Frame-Level

Pixel-Level Keypoints

22

Detections vs Tracks

Detections and tracks are synonymous across examples and user-interfaces.

A track is a (temporal) sequence of single-frame detections, but a detection

can also be viewed as a track with just a single state.

Detection Track

23

How to Perform Annotation
(for workflows #1 and #2)

Annotation should be performed in the format of what you want

your classifier to output. For example, if you only care about full

frame properties, you should only annotate full frame properties

If you want to perform species-level classification, you need to assign types to your

detections or tracks, the type being the species or subspecies identifier. Annotating

at a finer level is usually best, as later you can then train on the merging of lower-

level categories, but still have the option to train at the finest level.

A full annotation guide and annotation example videos can be found below, we

recommend reading through them and learning how to use the annotator:

https://viame.readthedocs.io/en/latest/section_links/annotation_and_visualization.html

In the project file, just like in the examples, ‘launch_annotation_gui.bat’ launches

the annotator.

https://viame.readthedocs.io/en/latest/section_links/annotation_and_visualization.html

24

Running Trained Detector Pipelines

Detector pipelines can be run from the GUI on a single sequence or video of data

via the Tools->Execute Pipeline->[pipeline] option, as shown above; results then

appear in the GUI.

Detector pipelines can be run from the project file in batch over multiple sequences

and then the result of each sequence opened in the annotation GUI automatically

25

Running Trained Detector Pipelines

Empty full frame labels can be generated via this pipeline

26

Annotation Tips n’ Tricks

• When you select a directory of images to process a glob pattern appears in the dialogue

(below) as “*”. “*” means try to open any file in the directory, but if you have non-images in a

directory it can also be helpful to put “*.png” or “*.sgi” to only load images of a known output

extendion. This can also be used to select only the left or right camera if you have stereo

data in the same folder.

• VIAME provides 3 main pre-trained pipelines: a default, generic, and motion pipeline.

– Default: Detect vertebrate and invertebrates using a default per-image CNN

– Generic: Put boxes around all arbitrary objects in an image using a CNN

– Motion: Put boxes around all moving targets using traditional approaches

• These models can be run from the GUI in either per-frame detection-only or tracking form

• Other pipelines runnable from the GUI allow the running of local (user-trained) models or

ones generated from IQR rapid model generation. VIAME add-ons add more runnable

models from this dialogue as well.

• Pixel level classification via polygons currently only works with scene element annotations

right now, track polygons are broken

27

Annotation Tips n’ Tricks

When saving out detections/tracks they can be saved out either as filtered tracks or

non-filtered tracks. Filtered tracks will have the threshold you set in the filtering

options enabled and is generally the way to go if correcting detectors.

3 Core Detection Training Workflows
In workflows #1 and 2 model training is performed via saving your annotations and

source data (or creating shortcuts to it) into the ‘training_data’ folder in a project file.

The folder structure required for this is shown in the below example and also below:

https://github.com/VIAME/VIAME/tree/master/examples/object_detector_training

Project files use the same data partition strategy, just in their ‘training_data’ folders,

then the train_deep_model_[arch].sh/.bat scripts can be used to train models in bulk,

where [arch] is the desired detection architecture.

The labels.txt contains 1 line per desired output

category and a list of synonyms on the same line,

e.g. the above would produce a detector which

produces 2 outputs: fish and shark, but including the

other categories in those super-categories.

https://github.com/VIAME/VIAME/tree/master/examples/object_detector_training

Supported Detector Architectures

29

There are several detection and classification models in the system:

• YOLOv2, Gridded YOLOv2, YOLOv3, Gridded YOLOv3, YOLO-WTF

• Cascade Faster RCNN, Mask Faster RCNN

• Scallop-TK

• ResNet50 Full Frame Classifier

• SVM Models on Top of ResNet50 Late Features

• AdaBoost on top of Manual Features for Pixel Classification

Cascade FRNN (CFRNN) is typically more accurate than YOLO, but slower and

requires much more annotations to train successfully. The SVM models require the

least number of annotations to train successfully, but is dependent on the off-the-shelf

generic object detector producing decent results for your problem. It can often be hard

to know which method is best without looking at the problem and trying different

techniques.

The with temporal features (WTF) variants are typically better at detecting small movers

in the background and worse at using color as a discriminator between categories, but

they are still experiment. Unlike the others, Mask RCNN and AdaBoost methods also

performs pixel-level classification.

Training from Annotation GUI

30

Models can be trained from the annotation GUI, but currently only on a single

sequence, unlike the examples and project files. It will use all loaded data and all

categories in the sequence.

3 Core Detection Training Workflows

Method #3: Rapid Model Generation (IQR) Example Manuals:

https://viame.readthedocs.io/en/latest/section_links/search_and_rapid_model_generation.html

https://github.com/VIAME/VIAME/tree/master/examples/search_and_rapid_model_generation/viame_ingest

The above manuals correspond to the examples folder, which are similar to the

project file. The project file contains scripts for creating indexes and models both

on bounding box detections, bounding box tracks, and full frame classifiers with

similar names.

IQR uses active learning to progressively fine-tune a model towards a target query

via progressive rounds of supplied user feedback

https://viame.readthedocs.io/en/latest/section_links/search_and_rapid_model_generation.html
https://github.com/VIAME/VIAME/tree/master/examples/search_and_rapid_model_generation/viame_ingest

Stereo Techniques

The system contains two methods for performing stereo measurement: a simple

segmentation approach and between learned fixed points. To annotate points to train the

fixed-point classifier, small boxes should be placed where the center of the box is on the

fixed key-point of interest. Keypoints should be given consistent names, e.g. ‘head’ or ‘tail’.

Running Trained Models

All trained output models get put in the ‘category_models’ folder regardless of

which technique you are using. The ‘deep_training’ and ‘augmented_images’

folders contain intermediate outputs that can be deleted when finished, although

‘deep_training’ will output models during the training process that can also be

used if the training processes are terminated early.

All of the ‘generate’ scripts in the project file use the detection models in the

category_model to produce automatically computed results. They are divided

based on whether or not they produce tracks or just per-frame detection, and

whether or not they’re applying deep models to data or svm (IQR) models.

These scripts look for all .svm files or a detector.pipe file which get produced by

training scripts. Note: older versions of the tool did not generate detector.pipe files

at training time, so if you need help upgrading them ping the developers email.

After using the generate scripts on a larger archive of videos, whenever you

launch the annotation GUI it will also ask you if you want to load the detections or

tracks you computed on the new data.

Running Trained Models

Outputs for all generation scripts (e.g.

computed track files) get put in the ‘database’

folder for every sequence or video.

For ‘for_image’ project files the ‘input_list.txt’

file is similarly consumed for the generate_*

scripts.

For ‘for_videos’ project files every folder or

video file in the ‘videos’ folder is consumed

Outputs can then be opened either in the

annotation GUI new project dialogue or via the

launch script which will query which stored

computed results in the database to load.

Running Trained Models

Lastly, there are many features that can be added to custom project files not in

this document. One example is the ‘MOUSS Project’ which outputs per-species

plots and Max-N counts for each input video using the trained models, but there

are others as well. The ‘launch_timeline_viewer.bat/sh’ option also allows for this

in a custom GUI.

For Questions:

viame.developers@gmail.com

